Chapter 13: Star Birth and Death

Chapter 1
How Science Works

  • The Scientific Method
  • Evidence
  • Measurements
  • Units and the Metric System
  • Measurement Errors
  • Estimation
  • Dimensions
  • Mass, Length, and Time
  • Observations and Uncertainty
  • Precision and Significant Figures
  • Errors and Statistics
  • Scientific Notation
  • Ways of Representing Data
  • Logic
  • Mathematics
  • Geometry
  • Algebra
  • Logarithms
  • Testing a Hypothesis
  • Case Study of Life on Mars
  • Theories
  • Systems of Knowledge
  • The Culture of Science
  • Computer Simulations
  • Modern Scientific Research
  • The Scope of Astronomy
  • Astronomy as a Science
  • A Scale Model of Space
  • A Scale Model of Time
  • Questions

Chapter 2
Early Astronomy

  • The Night Sky
  • Motions in the Sky
  • Navigation
  • Constellations and Seasons
  • Cause of the Seasons
  • The Magnitude System
  • Angular Size and Linear Size
  • Phases of the Moon
  • Eclipses
  • Auroras
  • Dividing Time
  • Solar and Lunar Calendars
  • History of Astronomy
  • Stonehenge
  • Ancient Observatories
  • Counting and Measurement
  • Astrology
  • Greek Astronomy
  • Aristotle and Geocentric Cosmology
  • Aristarchus and Heliocentric Cosmology
  • The Dark Ages
  • Arab Astronomy
  • Indian Astronomy
  • Chinese Astronomy
  • Mayan Astronomy
  • Questions

Chapter 3
The Copernican Revolution

  • Ptolemy and the Geocentric Model
  • The Renaissance
  • Copernicus and the Heliocentric Model
  • Tycho Brahe
  • Johannes Kepler
  • Elliptical Orbits
  • Kepler's Laws
  • Galileo Galilei
  • The Trial of Galileo
  • Isaac Newton
  • Newton's Law of Gravity
  • The Plurality of Worlds
  • The Birth of Modern Science
  • Layout of the Solar System
  • Scale of the Solar System
  • The Idea of Space Exploration
  • Orbits
  • History of Space Exploration
  • Moon Landings
  • International Space Station
  • Manned versus Robotic Missions
  • Commercial Space Flight
  • Future of Space Exploration
  • Living in Space
  • Moon, Mars, and Beyond
  • Societies in Space
  • Questions

Chapter 4
Matter and Energy in the Universe

  • Matter and Energy
  • Rutherford and Atomic Structure
  • Early Greek Physics
  • Dalton and Atoms
  • The Periodic Table
  • Structure of the Atom
  • Energy
  • Heat and Temperature
  • Potential and Kinetic Energy
  • Conservation of Energy
  • Velocity of Gas Particles
  • States of Matter
  • Thermodynamics
  • Entropy
  • Laws of Thermodynamics
  • Heat Transfer
  • Thermal Radiation
  • Wien's Law
  • Radiation from Planets and Stars
  • Internal Heat in Planets and Stars
  • Periodic Processes
  • Random Processes
  • Questions

Chapter 5
The Earth-Moon System

  • Earth and Moon
  • Early Estimates of Earth's Age
  • How the Earth Cooled
  • Ages Using Radioactivity
  • Radioactive Half-Life
  • Ages of the Earth and Moon
  • Geological Activity
  • Internal Structure of the Earth and Moon
  • Basic Rock Types
  • Layers of the Earth and Moon
  • Origin of Water on Earth
  • The Evolving Earth
  • Plate Tectonics
  • Volcanoes
  • Geological Processes
  • Impact Craters
  • The Geological Timescale
  • Mass Extinctions
  • Evolution and the Cosmic Environment
  • Earth's Atmosphere and Oceans
  • Weather Circulation
  • Environmental Change on Earth
  • The Earth-Moon System
  • Geological History of the Moon
  • Tidal Forces
  • Effects of Tidal Forces
  • Historical Studies of the Moon
  • Lunar Surface
  • Ice on the Moon
  • Origin of the Moon
  • Humans on the Moon
  • Questions

Chapter 6
The Terrestrial Planets

  • Studying Other Planets
  • The Planets
  • The Terrestrial Planets
  • Mercury
  • Mercury's Orbit
  • Mercury's Surface
  • Venus
  • Volcanism on Venus
  • Venus and the Greenhouse Effect
  • Tectonics on Venus
  • Exploring Venus
  • Mars in Myth and Legend
  • Early Studies of Mars
  • Mars Close-Up
  • Modern Views of Mars
  • Missions to Mars
  • Geology of Mars
  • Water on Mars
  • Polar Caps of Mars
  • Climate Change on Mars
  • Terraforming Mars
  • Life on Mars
  • The Moons of Mars
  • Martian Meteorites
  • Comparative Planetology
  • Incidence of Craters
  • Counting Craters
  • Counting Statistics
  • Internal Heat and Geological Activity
  • Magnetic Fields of the Terrestrial Planets
  • Mountains and Rifts
  • Radar Studies of Planetary Surfaces
  • Laser Ranging and Altimetry
  • Gravity and Atmospheres
  • Normal Atmospheric Composition
  • The Significance of Oxygen
  • Questions

Chapter 7
The Giant Planets and Their Moons

  • The Gas Giant Planets
  • Atmospheres of the Gas Giant Planets
  • Clouds and Weather on Gas Giant Planets
  • Internal Structure of the Gas Giant Planets
  • Thermal Radiation from Gas Giant Planets
  • Life on Gas Giant Planets?
  • Why Giant Planets are Giant
  • Gas Laws
  • Ring Systems of the Giant Planets
  • Structure Within Ring Systems
  • The Origin of Ring Particles
  • The Roche Limit
  • Resonance and Harmonics
  • Tidal Forces in the Solar System
  • Moons of Gas Giant Planets
  • Geology of Large Moons
  • The Voyager Missions
  • Jupiter
  • Jupiter's Galilean Moons
  • Jupiter's Ganymede
  • Jupiter's Europa
  • Jupiter's Callisto
  • Jupiter's Io
  • Volcanoes on Io
  • Saturn
  • Cassini Mission to Saturn
  • Saturn's Titan
  • Saturn's Enceladus
  • Discovery of Uranus and Neptune
  • Uranus
  • Uranus' Miranda
  • Neptune
  • Neptune's Triton
  • Pluto
  • The Discovery of Pluto
  • Pluto as a Dwarf Planet
  • Dwarf Planets
  • Questions

Chapter 8
Interplanetary Bodies

  • Interplanetary Bodies
  • Comets
  • Early Observations of Comets
  • Structure of the Comet Nucleus
  • Comet Chemistry
  • Oort Cloud and Kuiper Belt
  • Kuiper Belt
  • Comet Orbits
  • Life Story of Comets
  • The Largest Kuiper Belt Objects
  • Meteors and Meteor Showers
  • Gravitational Perturbations
  • Asteroids
  • Surveys for Earth Crossing Asteroids
  • Asteroid Shapes
  • Composition of Asteroids
  • Introduction to Meteorites
  • Origin of Meteorites
  • Types of Meteorites
  • The Tunguska Event
  • The Threat from Space
  • Probability and Impacts
  • Impact on Jupiter
  • Interplanetary Opportunity
  • Questions

Chapter 9
Planet Formation and Exoplanets

  • Formation of the Solar System
  • Early History of the Solar System
  • Conservation of Angular Momentum
  • Angular Momentum in a Collapsing Cloud
  • Helmholtz Contraction
  • Safronov and Planet Formation
  • Collapse of the Solar Nebula
  • Why the Solar System Collapsed
  • From Planetesimals to Planets
  • Accretion and Solar System Bodies
  • Differentiation
  • Planetary Magnetic Fields
  • The Origin of Satellites
  • Solar System Debris and Formation
  • Gradual Evolution and a Few Catastrophies
  • Chaos and Determinism
  • Extrasolar Planets
  • Discoveries of Exoplanets
  • Doppler Detection of Exoplanets
  • Transit Detection of Exoplanets
  • The Kepler Mission
  • Direct Detection of Exoplanets
  • Properties of Exoplanets
  • Implications of Exoplanet Surveys
  • Future Detection of Exoplanets
  • Questions

Chapter 10
Detecting Radiation from Space

  • Observing the Universe
  • Radiation and the Universe
  • The Nature of Light
  • The Electromagnetic Spectrum
  • Properties of Waves
  • Waves and Particles
  • How Radiation Travels
  • Properties of Electromagnetic Radiation
  • The Doppler Effect
  • Invisible Radiation
  • Thermal Spectra
  • The Quantum Theory
  • The Uncertainty Principle
  • Spectral Lines
  • Emission Lines and Bands
  • Absorption and Emission Spectra
  • Kirchoff's Laws
  • Astronomical Detection of Radiation
  • The Telescope
  • Optical Telescopes
  • Optical Detectors
  • Adaptive Optics
  • Image Processing
  • Digital Information
  • Radio Telescopes
  • Telescopes in Space
  • Hubble Space Telescope
  • Interferometry
  • Collecting Area and Resolution
  • Frontier Observatories
  • Questions

Chapter 11
Our Sun: The Nearest Star

  • The Sun
  • The Nearest Star
  • Properties of the Sun
  • Kelvin and the Sun's Age
  • The Sun's Composition
  • Energy From Atomic Nuclei
  • Mass-Energy Conversion
  • Examples of Mass-Energy Conversion
  • Energy From Nuclear Fission
  • Energy From Nuclear Fusion
  • Nuclear Reactions in the Sun
  • The Sun's Interior
  • Energy Flow in the Sun
  • Collisions and Opacity
  • Solar Neutrinos
  • Solar Oscillations
  • The Sun's Atmosphere
  • Solar Chromosphere and Corona
  • Sunspots
  • The Solar Cycle
  • The Solar Wind
  • Effects of the Sun on the Earth
  • Cosmic Energy Sources
  • Questions

Chapter 12
Properties of Stars

  • Stars
  • Star Names
  • Star Properties
  • The Distance to Stars
  • Apparent Brightness
  • Absolute Brightness
  • Measuring Star Distances
  • Stellar Parallax
  • Spectra of Stars
  • Spectral Classification
  • Temperature and Spectral Class
  • Stellar Composition
  • Stellar Motion
  • Stellar Luminosity
  • The Size of Stars
  • Stefan-Boltzmann Law
  • Stellar Mass
  • Hydrostatic Equilibrium
  • Stellar Classification
  • The Hertzsprung-Russell Diagram
  • Volume and Brightness Selected Samples
  • Stars of Different Sizes
  • Understanding the Main Sequence
  • Stellar Structure
  • Stellar Evolution
  • Questions

Chapter 13
Star Birth and Death

  • Star Birth and Death
  • Understanding Star Birth and Death
  • Cosmic Abundance of Elements
  • Star Formation
  • Molecular Clouds
  • Young Stars
  • T Tauri Stars
  • Mass Limits for Stars
  • Brown Dwarfs
  • Young Star Clusters
  • Cauldron of the Elements
  • Main Sequence Stars
  • Nuclear Reactions in Main Sequence Stars
  • Main Sequence Lifetimes
  • Evolved Stars
  • Cycles of Star Life and Death
  • The Creation of Heavy Elements
  • Red Giants
  • Horizontal Branch and Asymptotic Giant Branch Stars
  • Variable Stars
  • Magnetic Stars
  • Stellar Mass Loss
  • White Dwarfs
  • Supernovae
  • Seeing the Death of a Star
  • Supernova 1987A
  • Neutron Stars and Pulsars
  • Special Theory of Relativity
  • General Theory of Relativity
  • Black Holes
  • Properties of Black Holes
  • Questions

Chapter 14
The Milky Way

  • The Distribution of Stars in Space
  • Stellar Companions
  • Binary Star Systems
  • Binary and Multiple Stars
  • Mass Transfer in Binaries
  • Binaries and Stellar Mass
  • Nova and Supernova
  • Exotic Binary Systems
  • Gamma Ray Bursts
  • How Multiple Stars Form
  • Environments of Stars
  • The Interstellar Medium
  • Effects of Interstellar Material on Starlight
  • Structure of the Interstellar Medium
  • Dust Extinction and Reddening
  • Groups of Stars
  • Open Star Clusters
  • Globular Star Clusters
  • Distances to Groups of Stars
  • Ages of Groups of Stars
  • Layout of the Milky Way
  • William Herschel
  • Isotropy and Anisotropy
  • Mapping the Milky Way
  • Questions

Chapter 15
Galaxies

  • The Milky Way Galaxy
  • Mapping the Galaxy Disk
  • Spiral Structure in Galaxies
  • Mass of the Milky Way
  • Dark Matter in the Milky Way
  • Galaxy Mass
  • The Galactic Center
  • Black Hole in the Galactic Center
  • Stellar Populations
  • Formation of the Milky Way
  • Galaxies
  • The Shapley-Curtis Debate
  • Edwin Hubble
  • Distances to Galaxies
  • Classifying Galaxies
  • Spiral Galaxies
  • Elliptical Galaxies
  • Lenticular Galaxies
  • Dwarf and Irregular Galaxies
  • Overview of Galaxy Structures
  • The Local Group
  • Light Travel Time
  • Galaxy Size and Luminosity
  • Mass to Light Ratios
  • Dark Matter in Galaxies
  • Gravity of Many Bodies
  • Galaxy Evolution
  • Galaxy Interactions
  • Galaxy Formation
  • Questions

Chapter 16
The Expanding Universe

  • Galaxy Redshifts
  • The Expanding Universe
  • Cosmological Redshifts
  • The Hubble Relation
  • Relating Redshift and Distance
  • Galaxy Distance Indicators
  • Size and Age of the Universe
  • The Hubble Constant
  • Large Scale Structure
  • Galaxy Clustering
  • Clusters of Galaxies
  • Overview of Large Scale Structure
  • Dark Matter on the Largest Scales
  • The Most Distant Galaxies
  • Black Holes in Nearby Galaxies
  • Active Galaxies
  • Radio Galaxies
  • The Discovery of Quasars
  • Quasars
  • Types of Gravitational Lensing
  • Properties of Quasars
  • The Quasar Power Source
  • Quasars as Probes of the Universe
  • Star Formation History of the Universe
  • Expansion History of the Universe
  • Questions

Chapter 17
Cosmology

  • Cosmology
  • Early Cosmologies
  • Relativity and Cosmology
  • The Big Bang Model
  • The Cosmological Principle
  • Universal Expansion
  • Cosmic Nucleosynthesis
  • Cosmic Microwave Background Radiation
  • Discovery of the Microwave Background Radiation
  • Measuring Space Curvature
  • Cosmic Evolution
  • Evolution of Structure
  • Mean Cosmic Density
  • Critical Density
  • Dark Matter and Dark Energy
  • Age of the Universe
  • Precision Cosmology
  • The Future of the Contents of the Universe
  • Fate of the Universe
  • Alternatives to the Big Bang Model
  • Space-Time
  • Particles and Radiation
  • The Very Early Universe
  • Mass and Energy in the Early Universe
  • Matter and Antimatter
  • The Forces of Nature
  • Fine-Tuning in Cosmology
  • The Anthropic Principle in Cosmology
  • String Theory and Cosmology
  • The Multiverse
  • The Limits of Knowledge
  • Questions

Chapter 18
Life On Earth

  • Nature of Life
  • Chemistry of Life
  • Molecules of Life
  • The Origin of Life on Earth
  • Origin of Complex Molecules
  • Miller-Urey Experiment
  • Pre-RNA World
  • RNA World
  • From Molecules to Cells
  • Metabolism
  • Anaerobes
  • Extremophiles
  • Thermophiles
  • Psychrophiles
  • Xerophiles
  • Halophiles
  • Barophiles
  • Acidophiles
  • Alkaliphiles
  • Radiation Resistant Biology
  • Importance of Water for Life
  • Hydrothermal Systems
  • Silicon Versus Carbon
  • DNA and Heredity
  • Life as Digital Information
  • Synthetic Biology
  • Life in a Computer
  • Natural Selection
  • Tree Of Life
  • Evolution and Intelligence
  • Culture and Technology
  • The Gaia Hypothesis
  • Life and the Cosmic Environment

Chapter 19
Life in the Universe

  • Life in the Universe
  • Astrobiology
  • Life Beyond Earth
  • Sites for Life
  • Complex Molecules in Space
  • Life in the Solar System
  • Lowell and Canals on Mars
  • Implications of Life on Mars
  • Extreme Environments in the Solar System
  • Rare Earth Hypothesis
  • Are We Alone?
  • Unidentified Flying Objects or UFOs
  • The Search for Extraterrestrial Intelligence
  • The Drake Equation
  • The History of SETI
  • Recent SETI Projects
  • Recognizing a Message
  • The Best Way to Communicate
  • The Fermi Question
  • The Anthropic Principle
  • Where Are They?

Black Holes


Black holes can only be described and understood using Einstein's theory of relativity, but their existence was hypothesized over 200 years ago. The Reverend John Michell, an English amateur astronomer, knew that Newton's law of gravity predicted that massive and dense objects would have high escape velocities. In 1784, he pointed out that a sufficiently dense object might have an escape velocity faster than light. Since all electromagnetic radiation travels at the speed of light, such an object would be completely dark.


Different trajectories an object can get based on the initial velocity. A = The object falls towards the ground (in this case the Earth). B = The object gets into a stationary orbit around the Earth (orbital speed/velocity). C = The object has too high velocity to go into a stationary orbit at the same altitude, but too low velocity to leave the Earth's field of gravity and will eventually fall into an orbit at a higher altitude. D = The object has high enough velocity to leave the Earth's field of gravity (escape velocity).

The nature of a black hole can be understood in terms of the idea of escape velocity. Imagine that the Sun has somehow been compressed into a black hole of 1 solar mass. A rocket passing at a great distance would experience the same gravity field as a rocket at a great distance from the Sun. At 1 A.U. from the black hole, for example, the velocity needed to escape into interstellar space would be 42 kilometers per second, the same as the speed needed to leave the Earth's orbit. You can see that the gravity far from a black hole is not very severe. It is not true that a black hole acts like a cosmic "vacuum cleaner," sucking up everything around it. But as we get much closer to the black hole, the escape velocity increases. Larger speeds are needed to escape the stronger and stronger gravity. At a distance of 3 kilometers, the speed needed to escape would be the speed of light. Since we know of nothing that can travel faster than light, nothing can escape this region.

 

Crush a star like the Sun down to a radius of 3 kilometers and you have a black hole. The imaginary sphere with a radius of 3 kilometers is called the event horizon. Inside this surface, no object, no particle, no information, not even light can escape. Any star that collapses within its event horizon disappears from the universe, betraying its presence only by its gravity.


Simulated view of a black hole in front of the Large Magellanic Cloud. The ratio between the black hole Schwarzschild radius and the observer distance to it is 1:9. Of note is the gravitational lensing effect known as an Einstein ring, which produces a set of two fairly bright and large but highly distorted images of the Cloud as compared to its actual angular size.

The radius corresponding to the event horizon is called the Schwarzschild radius, after the astronomer who was the first to solve Einstein's equations of general relativity for a collapsed object. How is a black hole produced? An object of any mass can become a black hole if it is sufficiently compressed. However, black holes were predicted to exist as a consequence of stellar evolution. Any star that ends its life with a core mass of 3 solar masses or more will become a black hole because no known force in nature can prevent its collapse within its event horizon.

 

The theory of general relativity can be used to calculate the effect of gravity on light rays at different distances from the event horizon. At a large distance from a black hole, light travels away from a light source uniformly in all directions. As the black hole is approached, light passing near the hole will be slightly deflected. Closer to the event horizon, some light rays are deflected by the strong gravity and are captured by the black hole. At a distance of 1.5 times the Schwarzschild radius, half the light escapes. Photons emitted at right angles to the black hole are trapped in circular orbits. These orbits define the photon sphere. At the Schwarzschild radius, the deflection of light is so severe that no light can escape. This defines the event horizon.

Another analogy can be used to convey the extreme space-time curvature caused by black holes. General relativity predicts that any mass will distort the space and time around it. A good analogy for the space curvature in two dimensions is the distortion in a thin rubber sheet. In the absence of any matter, space will be flat and have no curvature. With a mass placed on the sheet, the distortion is large enough to clearly deflect matter and radiation that pass near it. In the extreme case of a black hole, the curvature is complete. We can imagine a piece of space and time being "pinched off" and permanently removed from communication with the rest of the universe.

If you were unfortunate enough to fall into a 1 solar mass black hole, you would be killed by tidal forces long before you reached the event horizon. (Essentially, the difference between the gravity force on your head and that on your feet would rip you apart!) Assuming that somehow you could survive the descent, you would see clocks far from the black hole keeping slower and slower time, until as you neared the event horizon they appeared to stop altogether. Seen from the outside, your clock would appear to slow down as you took an infinite time to reach the event horizon! If you carried a light source with you as you fell into the black hole, a distant observer would see the photons suffer a larger and larger gravitational redshift (to you, the light would stay the same color). The redshift occurs because light loses energy escaping from the intense gravity. Seen from the outside, the photons would be infinitely redshifted to zero energy as you reached the event horizon.


NASA StarChild image of Stephen Hawking.

What lies within the event horizon of a black hole? Nobody really knows. The event horizon is not a physical barrier, just an information barrier. Einstein's theory predicts that matter will keep collapsing gravitationally until it has shrunk to a point of zero volume and infinite density! This endpoint is called a singularity and it cannot be adequately described using general relativity. Black holes are not entirely black. In the 1970s, English physicist Stephen Hawking calculated that black holes could create subatomic particles near their event horizons and slowly radiate away their energy, or "evaporate." This so-called Hawking radiation is expected to be dramatic for microscopic black holes, but barely noticeable for solar-sized black holes. Far more important is the fact that any material falling toward the event horizon will be subject to enormous gravitational forces. The friction and heating of material that falls in will be released in the form of X-rays. Therefore, a black hole may be a source of energy due to the death spasms of matter falling into it.

 

Can we ever hope to detect a black hole? Yes. Outside their event horizons, black holes have gravity fields indistinguishable from those of ordinary stars of the same mass. Thus they can orbit around stars just like planets or binary star companions. If we observed such a star from a distance, we would not see the black hole, but we could see the star's orbital motion and calculate the mass of the unseen companion, just as astronomers routinely do in the case of ordinary faint companions. The result would indicate an unusually high-mass companion for an X-ray source — maybe 5 or 10 solar masses — which is a sign that we are dealing with a black hole candidate.


Artist impression of a binary system with an accretion disk around a black hole being fed by material from the companion star.

Suppose a black hole is orbiting around an evolved star that has expanded into a giant state and is shedding mass. Some of the expanding gas would fall toward the black hole at relativistic speeds. Because this gas would, on average, have some angular momentum around the star, rather than falling directly toward it, it would form a disk of gas spiraling inward toward the black hole. This disk is called an accretion disk. Its gas would be extremely hot because it would be constantly hit by new gas streaming in from the other star. Because of the high temperature, the disk would radiate at short ultraviolet or X-ray wavelengths.

 

Chandra image of Cygnus X-1.

The best evidence for a black hole would be a massive, high-temperature X-ray source orbiting another normal star. There are currently about two dozen excellent candidates and another dozen or so plausible candidates. One such object is Cygnus X-1, a binary system composed of a supergiant star we can see orbiting an unseen companion. The companion object has been calculated to have a mass of at least 5 solar masses, and the system is one of the brightest X-ray sources in the sky. It's one of the strongest candidates for a black hole among several dozen binary systems with good orbital mass constraints. The argument for a black hole in these systems has three steps. First, the X-ray emission must be consistent with accretion onto a compact object. Second, the calculation of the orbit of the binary system must lead to a mass for the compact object that exceeds 3 solar masses. Third, it is assumed that general relativity is the correct theory of gravitation and that neutron stars with masses above 3 solar masses cannot exist. Is the evidence convincing? All of the observations have uncertainties attached and the interpretation is indirect and circumstantial. Whereas the evidence for the existence of neutron stars is convincing, the evidence for stellar black holes is strong but not overwhelming. Black holes are the most exotic member of the stellar "zoo," and astronomers continue to work to prove their existence beyond doubt.

Even with this modest sample of black holes, astronomers can extrapolate to an estimate of about 10 million black holes in the Milky Way galaxy, and a staggering 40 quintillion or 4 x 1019 in the universe. These exotic objects make up 1% of the normal matter in the universe.


Author: Chris Impey
Editor/Contributor: Audra Baleisis