Video Lectures - Chapter 1: Fundamentals of Science and Astronomy

Autoplay on Load
Autoplay Next Lecture

1. Fundamentals of Science and Astronomy

  • 1.00  Astronomy
  • 1.01  Birthplace of Science
  • 1.02  The Scientific Method
  • 1.03  Evidence
  • 1.04  The Evidence of Astronomy
  • 1.05  Steps of the Scientific Method
  • 1.06  Measurements
  • 1.07  Scientific Notation
  • 1.08  Mass
  • 1.09  The Metric System
  • 1.10  Accuracy and Precision
  • 1.11  Estimation
  • 1.12  Scales of Mass
  • 1.13  Scales of Length
  • 1.14  Scales of Time
  • 1.15  Measurement Error
  • 1.16  Random and Systematic Errors
  • 1.17  Fundamental Constants
  • 1.18  Astronomy Units
  • 1.19  Measuring Angles
  • 1.20  Testing a Hypothesis
  • 1.21  Exponentials and Logarithms
  • 1.22  Logic
  • 1.23  Epistemology
  • 1.24  Deduction
  • 1.25  Induction
  • 1.26  The Role of Mathematics
  • 1.27  Scientific Reasoning
  • 1.28  Probability
  • 1.29  Sampling
  • 1.30  Causation and Correlation
  • 1.31  Testing Theories
  • 1.32  Extending the Senses
  • 1.33  Paradigms
  • 1.34  Thought Experiments
  • 1.35  Theories
  • 1.36  Other Systems of Knowledge
  • 1.37  Astrology
  • 1.38  Pseudoscience
  • 1.39  Aesthetics of Science
  • 1.40  Limitations of Science
  • 1.41  The Work of Scientists

2. Ancient Astronomy and Celestial Phenomena

  • 2.00  Astronomy in Prehistory
  • 2.01  Motions in the Sky
  • 2.02  Constellations
  • 2.03  Navigation
  • 2.04  Celestial Sphere
  • 2.05  Star Motions
  • 2.06  Motion of the Sun
  • 2.07  Latitude and the Sun
  • 2.08  Solstices and Equinoxes
  • 2.09  Seasons
  • 2.10  Solar and Sidereal Day
  • 2.11  Phases of the Moon
  • 2.12  Eclipses
  • 2.13  Lunar Eclipse
  • 2.14  Solar Eclipse
  • 2.15  Motion of the Moon
  • 2.16  Precession
  • 2.17  Retrograde Motion
  • 2.18  Ancient Astronomy
  • 2.19  Early Calendars
  • 2.20  Solar Calendar
  • 2.21  Solar and Lunar Calendars
  • 2.22  Days of the Week
  • 2.23  Divisions of Time
  • 2.24  Early Roman Calendar
  • 2.25  Julian Calendar
  • 2.26  Modern Calendar
  • 2.27  The Birth of Science
  • 2.28  Thales
  • 2.29  Anaximander
  • 2.30  Anaximenes
  • 2.31  Pythagoras
  • 2.32  Democritus
  • 2.33  Empedocles
  • 2.34  Socrates
  • 2.35  Plato
  • 2.36  Early Greek Ideas
  • 2.37  Aristotle
  • 2.38  Aristarchus
  • 2.39  Anaxagoras
  • 2.40  Eratosthenes
  • 2.41  Angular Size and True Size
  • 2.42  Small Angle Equation

3. Concepts and History of Astronomy and Physics

  • 3.00  Heliocentric Cosmology
  • 3.01  Parallax
  • 3.02  Hipparchus
  • 3.03  Ptolemy
  • 3.04  Epicycles
  • 3.05  Crystalline Spheres
  • 3.06  The End of Greek Science
  • 3.07  The Dark Ages
  • 3.08  Medieval Europe
  • 3.09  Arab Astronomy
  • 3.10  Indian Astronomy
  • 3.11  Chinese Astronomy
  • 3.12  Mayan Astronomy
  • 3.13  Problems With Greek Cosmology
  • 3.14  The Renaissance
  • 3.15  Copernican Revolution
  • 3.16  Copernicus
  • 3.17  Tycho Brahe
  • 3.18  Accurate Planetary Observations
  • 3.19  Kepler
  • 3.20  Kepler's Laws of Planetary Motion
  • 3.21  Galileo
  • 3.22  Early Telescopes
  • 3.23  Phases of Venus
  • 3.24  Acceleration
  • 3.25  Mass
  • 3.26  Inertia and Relativity
  • 3.27  Galileo and the Church
  • 3.28  Newton
  • 3.29  Newton's Laws of Motion
  • 3.30  Nature of Light
  • 3.31  Newton's First Law of Motion
  • 3.32  Newton's Second Law of Motion
  • 3.33  Newton's Third Law of Motion
  • 3.34  Universal Law of Gravity
  • 3.35  Inverse Square Law
  • 3.36  Mass and Weight
  • 3.37  Newton and Society
  • 3.38  Plurality of Worlds
  • 3.39  Momentum
  • 3.40  Angular Momentum
  • 3.41  Revolutions in Science and the Arts
  • 3.42  Scale of the Solar System
  • 3.43  Spacing of the Planets
  • 3.44  Newton and Orbits

4. Chemistry and Physics

  • 4.00  Gravity and Calculus
  • 4.01  Newton and Cosmology
  • 4.02  Circular Velocity
  • 4.03  Geosynchronous Orbit
  • 4.04  Escape Velocity
  • 4.05  Early Space Exploration
  • 4.06  Solar System Exploration
  • 4.07  Manned Space Flight
  • 4.08  Robotic Space Craft
  • 4.09  Uses of Space
  • 4.10  Future of Space Exploration
  • 4.11  Greek Ideas About Matter
  • 4.12  Dalton
  • 4.13  Elements and Compounds
  • 4.14  Atoms and Molecules
  • 4.15  Atomic Theory
  • 4.16  Periodic Table
  • 4.17  Rutherford
  • 4.18  Rutherford's Experiments
  • 4.19  Atomic Number
  • 4.20  Isotopes
  • 4.21  Radioactivity
  • 4.22  Atomic Structure
  • 4.23  Density of Matter
  • 4.24  Atomic Forces
  • 4.25  Energy
  • 4.26  Types of Energy
  • 4.27  Chemical Energy
  • 4.28  Electric and Magnetic Energy
  • 4.29  Nuclear Energy
  • 4.30  Gravitational Energy
  • 4.31  Electromagnetic Energy
  • 4.32  Kinetic Energy
  • 4.33  Thermal Energy
  • 4.34  Friction
  • 4.35  Potential and Kinetic Energy
  • 4.36  Transformation of Energy
  • 4.37  Solar Energy
  • 4.38  Conservation of Energy
  • 4.39  States of Matter
  • 4.40  Solids
  • 4.41  Liquids
  • 4.42  Gases
  • 4.43  Plasma
  • 4.44  Thermodynamics
  • 4.45  Thermal Equilibrium

5. Quantum Theory and Radiation

  • 5.00  Heat Transfer
  • 5.01  Conduction
  • 5.02  Convection
  • 5.03  Radiation
  • 5.04  Visible Spectrum
  • 5.05  Invisible Radiation
  • 5.06  Temperature
  • 5.07  Temperature Scales
  • 5.08  Absolute Zero
  • 5.09  Velocities of Atoms in a Gas
  • 5.10  Thermal Radiation
  • 5.11  Thermal Spectrum
  • 5.12  Wien's Law
  • 5.13  Infrared Radiation
  • 5.14  Stephan-Boltzmann Law
  • 5.15  Intrinsic Radiation
  • 5.16  Reflected Radiation
  • 5.17  Scientific Color
  • 5.18  Nature of Light
  • 5.19  Electricity and Magnetism
  • 5.20  Michael Faraday
  • 5.21  Electromagnetic Radiation
  • 5.22  Speed of Light
  • 5.23  Properties of Radiation
  • 5.24  Electromagnetic Spectrum
  • 5.25  Properties of Waves
  • 5.26  Wavelength and Frequency
  • 5.27  Wave Properties of Light
  • 5.28  Particle Properties of Light
  • 5.29  Transverse and Longitudinal Waves
  • 5.30  Photons
  • 5.31  How Radiation Travels
  • 5.32  Inverse Square Law
  • 5.33  Structure of the Atom
  • 5.34  Quantum Theory
  • 5.35  Planck's Constant
  • 5.36  Reality of Atoms
  • 5.37  Energy Levels
  • 5.38  Wave-Particle Duality
  • 5.39  Particles as Waves
  • 5.40  Heisenberg's Uncertainty Principle

6. Optics and Quantum Theory

  • 6.00  Limit to Precision
  • 6.01  Heisenberg
  • 6.02  Neils Bohr
  • 6.03  Spectral Lines
  • 6.04  Emission Lines
  • 6.05  Absorption Lines
  • 6.06  Spectral Bands
  • 6.07  Spectral Fingerprint
  • 6.08  Quantum Theory and Determinism
  • 6.09  Schrodinger's Cat
  • 6.10  Atoms and Probability
  • 6.11  Changing World Views in Science and the Arts
  • 6.12  Radiation from Space
  • 6.13  Astronomy Across the Electromagnetic Spectrum
  • 6.14  Electromagnetic Spectrum
  • 6.15  Refraction and Reflection
  • 6.16  Telescopes
  • 6.17  Purpose of a Telescope
  • 6.18  Reflecting Telescopes
  • 6.19  Parts of a Telescope
  • 6.20  Adaptive Optics
  • 6.21  Optical Detectors
  • 6.22  Photometry
  • 6.23  Spectroscopy
  • 6.24  Image Processing
  • 6.25  Interferometry
  • 6.26  Light Grasp of a Telescope
  • 6.27  Space Astronomy
  • 6.28  Telescope Frontiers
  • 6.29  Emission Spectrum
  • 6.30  Absorption Spectrum
  • 6.31  Kirchoff's Laws of Radiation
  • 6.32  Doppler Effect
  • 6.33  Special Relativity

7. Geology and Physics

  • 7.00  Inertial and Gravitational Mass
  • 7.01  General Relativity
  • 7.02  Gravity and Light
  • 7.03  Time and Space
  • 7.04  Einstein
  • 7.05  The Solar System
  • 7.06  Comparative Planetology
  • 7.07  Planetary Geology
  • 7.08  Planetary Atmospheres
  • 7.09  Earth
  • 7.10  Speculation About Earth's Age
  • 7.11  Radioactive Ages
  • 7.12  Carbon Dating
  • 7.13  Age of the Earth
  • 7.14  Earth's Oldest Rocks
  • 7.15  Interior Structure
  • 7.16  Layers of the Earth
  • 7.17  Rocks of the Earth
  • 7.18  Rock Types
  • 7.19  Seismic Waves
  • 7.20  Plate Tectonics
  • 7.21  Geological Activity
  • 7.22  Volcanism
  • 7.23  Erosion
  • 7.24  Cratering
  • 7.25  Magnetic Fields
  • 7.26  Earth's Atmosphere

8. Solar Neighborhood and Space Exploration

  • 8.00  Mass Extinctions
  • 8.01  Cosmic Catastrophes
  • 8.02  Climate Change
  • 8.03  Ozone Layer
  • 8.04  Greenhouse Effect
  • 8.05  Global Warming
  • 8.06  The Moon
  • 8.07  Lunar Geology
  • 8.08  Apollo Missions
  • 8.09  Tides
  • 8.10  Formation of the Moon
  • 8.11  Terrestrial Planets
  • 8.12  Mercury
  • 8.13  Mercury's Orbit
  • 8.14  Venus
  • 8.15  Atmosphere of Venus
  • 8.16  Venus and Mars
  • 8.17  Volcanoes on Venus
  • 8.18  Temperature of Venus
  • 8.19  Mars
  • 8.20  Mars in History
  • 8.21  Lowell and Mars
  • 8.22  Mars and UFOs
  • 8.23  Mariner and Viking

9. Outer Planets and Planetary Atmospheres

  • 9.00  Atmosphere of Mars
  • 9.01  Water on Mars
  • 9.02  Climate Change on Mars
  • 9.03  Volcanoes on Mars
  • 9.04  Landscape of Mars
  • 9.05  Martian Meteorites
  • 9.06  Life on Mars
  • 9.07  Viking Landers
  • 9.08  The Allen-Hills Meteorite
  • 9.09  Evidence of Life on Mars
  • 9.10  Finding Life on Mars
  • 9.11  Future Mars Missions
  • 9.12  Phobos and Deimos
  • 9.13  Shapes of Moons
  • 9.14  Comparative Planetology
  • 9.15  Surface Ages
  • 9.16  Internal Heat
  • 9.17  Geological Activity
  • 9.18  Atmosphere Retention
  • 9.19  Atmospheric Composition
  • 9.20  Carbon Dioxide Atmosphere
  • 9.21  Oxygen Atmosphere
  • 9.22  Giant Planets
  • 9.23  Planetary Ices
  • 9.24  A Variety of Moons
  • 9.25  Gas Giant Composition
  • 9.26  Gas Giant Atmospheres
  • 9.27  Jupiter
  • 9.28  Atmosphere of Jupiter
  • 9.29  Great Red Spot
  • 9.30  Internal Structure of Jupiter
  • 9.31  Jupiter's Core
  • 9.32  Internal Heat of Jupiter
  • 9.33  Gas Giant Heat
  • 9.34  Air Pressure
  • 9.35  Boyle's Law
  • 9.36  Ideal Gas Law
  • 9.37  Gas Properties and Atomic Motion
  • 9.38  Life on Jupiter
  • 9.39  Gas Giant Ring Systems
  • 9.40  Saturn
  • 9.41  Atmosphere of Saturn
  • 9.42  Interior of Saturn
  • 9.43  Saturn's Rings

10. The Solar System

  • 10.00  Origin of Rings
  • 10.01  Structure of Saturn's Rings
  • 10.02  Resonance
  • 10.03  Orbital Resonance
  • 10.04  Tidal Forces
  • 10.05  Roche Limit
  • 10.06  Size of Moons
  • 10.07  Sphere of Graviational Influence
  • 10.08  Definition of Moons
  • 10.09  Families of Moons
  • 10.10  Planets and Atmospheres
  • 10.11  Moons of Jupiter
  • 10.12  Tidal Heating
  • 10.13  Ganymede
  • 10.14  Io
  • 10.15  Volcanoes on Io
  • 10.16  Europa
  • 10.17  Life on Europa
  • 10.18  Callisto
  • 10.19  Titan
  • 10.20  Life on Titan
  • 10.21  Enceladus
  • 10.22  Uranus
  • 10.23  Miranda
  • 10.24  Orbit of Uranus
  • 10.25  Prograde and Retrograde Rotation
  • 10.26  Orbit Inclination
  • 10.27  Orbit Eccentricity
  • 10.28  Discovery of Uranus
  • 10.29  Neptune
  • 10.30  Triton
  • 10.31  Structure of Neptune
  • 10.32  Discovery of Neptune
  • 10.33  Pluto
  • 10.34  Status of Pluto
  • 10.35  Charon
  • 10.36  Structure of Pluto
  • 10.37  Planets in the Outer Solar System
  • 10.38  Bode's Rule
  • 10.39  Interplanetary Bodies
  • 10.40  Meteors and Meteorites

11. Interplanetary Bodies

  • 11.00  Orbits of Interplanetary Bodies
  • 11.01  Masses of Interplanetary Bodies
  • 11.02  Astronomical Units
  • 11.03  Setting the Scale of the Solar System
  • 11.04  Longitude and Latitude
  • 11.05  Transits
  • 11.06  Distance to the Planets
  • 11.07  Comets
  • 11.08  Comet Structure
  • 11.09  Comet Orbits
  • 11.10  Perihelion and Aphelion
  • 11.11  Comets and Kepler's Laws
  • 11.12  Comets in History
  • 11.13  Halley's Comet
  • 11.14  Comet Composition
  • 11.15  Comet Nucleus
  • 11.16  Oort Cloud
  • 11.17  Life Story of Comets
  • 11.18  Chaotic Orbits
  • 11.19  Gravitational Perturbations
  • 11.20  Meteors
  • 11.21  Meteor Showers
  • 11.22  Meteors and Comets
  • 11.23  Frequency of Meteors
  • 11.24  Directions of Meteors
  • 11.25  Zodiacal Light
  • 11.26  Fireballs
  • 11.27  Asteroids
  • 11.28  Discovery of Asteroids
  • 11.29  Names of Asteroids
  • 11.30  Trojan Asteroids
  • 11.31  Earth-Crossing Asteroids
  • 11.32  Kirkwood Gaps
  • 11.33  Compound Asteroids
  • 11.34  Composition of Asteroids
  • 11.35  Soot and Frost Lines
  • 11.36  Evolution of Asteroids
  • 11.37  Meteorites
  • 11.38  Meteorites in History
  • 11.39  Nature of Meteorites
  • 11.40  Types of Meteorites
  • 11.41  Origin of Meteorites
  • 11.42  Meteorite Collisions
  • 11.43  Impact Rate of Meteorites
  • 11.44  Impacts From Space
  • 11.45  Tunguska
  • 11.46  Meteor Craters

12. Formation and Nature of Planetary Systems

  • 12.00  K-T Impact
  • 12.01  Interplanetary Threat
  • 12.02  Mining Asteroids
  • 12.03  Formation of the Solar System
  • 12.04  Gravitational Collapse
  • 12.05  Helmholtz Contraction
  • 12.06  Solar System Formation and Angular Momentum
  • 12.07  Solar Nebula
  • 12.08  Condensation Sequence
  • 12.09  Condensation in the Solar Nebula
  • 12.10  Evidence of Formation
  • 12.11  Planetesimals
  • 12.12  Accretion
  • 12.13  Formation of Planets
  • 12.14  Formation of Terrestrial Planets
  • 12.15  Formation of Gas Giant Planets
  • 12.16  Formation of the Asteroid Belt
  • 12.17  Formation of Meteorites
  • 12.18  Formation of Comets
  • 12.19  Formation of Satellites
  • 12.20  Triggering the Collapse
  • 12.21  Extrasolar Planets
  • 12.22  Direct Detection
  • 12.23  Infrared Detection
  • 12.24  Detection by Transits
  • 12.25  Center of Gravity
  • 12.26  Reflex Motion
  • 12.27  Doppler Detection
  • 12.28  Signature of Extrasolar Planets
  • 12.29  Pulsar Planets
  • 12.30  Discovery of Extrasolar Planets
  • 12.31  Properties of Extrasolar Planets
  • 12.32  Theories of Extrasolar Planets
  • 12.33  Detecting Earths
  • 12.34  Imaging Earths
  • 12.35  The Sun
  • 12.36  Rotation of the Sun
  • 12.37  Spectrum of the Sun
  • 12.38  Solar Atmosphere
  • 12.39  Solar Composition
  • 12.40  Discovery of Helium
  • 12.41  Energy Source of the Sun

13. Particle Physics and the Sun

  • 13.00  Darwin and Kelvin
  • 13.01  Energy from Atomic Nuclei
  • 13.02  Radioactive Decay
  • 13.03  Alpha
  • 13.04  Marie Curie
  • 13.05  Mass
  • 13.06  Conservation of Mass-Energy
  • 13.07  Binding Energy
  • 13.08  Nuclear Binding Energy
  • 13.09  Nuclear Fission
  • 13.10  Fission as an Energy Source
  • 13.11  Nuclear Fusion
  • 13.12  Fusion as an Energy Source
  • 13.13  Fusion in the Sun
  • 13.14  The Proton-Proton Chain
  • 13.15  Positron
  • 13.16  Neutrinos
  • 13.17  Solar Neutrinos
  • 13.18  Sun's Core
  • 13.19  Standard Solar Model
  • 13.20  Radiation and Convection
  • 13.21  Collision and Opacity
  • 13.22  Radiation Transport
  • 13.23  Photosphere
  • 13.24  Solar Oscillations
  • 13.25  Sun Spots
  • 13.26  Prominences and Flares
  • 13.27  The Solar Cycle
  • 13.28  Cause of the Solar Cycle
  • 13.29  Sunspot
  • 13.30  Solar Chromosphere
  • 13.31  Solar Corona
  • 13.32  Solar Wind
  • 13.33  Sun-Earth Interaction
  • 13.34  Auroras

14. Stars

  • 14.00  Sun and Climate Change
  • 14.01  Solar Constant
  • 14.02  Human Energy Sources
  • 14.03  Cosmic Energy Sources
  • 14.04  Stars
  • 14.05  Star Names
  • 14.06  Light Year
  • 14.07  Parsec
  • 14.08  Apparent Brightness
  • 14.09  Relative Brightness
  • 14.10  Stars as Suns
  • 14.11  The Magnitude Scale
  • 14.12  Visual Magnitude
  • 14.13  Photometry
  • 14.14  Absolute Brightness
  • 14.15  Estimating Star Distances
  • 14.16  Parallax Distance
  • 14.17  Hipparcos
  • 14.18  Spectroscopy
  • 14.19  Classifying Spectra
  • 14.20  Annie Cannon
  • 14.21  Hydrogen Spectra
  • 14.22  Spectral Classes
  • 14.23  Stellar Mnemonics
  • 14.24  Spectral Class and Lines
  • 14.25  Spectral Class and Temperature
  • 14.26  Chemical Composition
  • 14.27  Stellar Composition
  • 14.28  Astrometry
  • 14.29  Radial Velocity
  • 14.30  Proper Motion
  • 14.31  Stellar Luminosity
  • 14.32  Determining Luminosity
  • 14.33  Stellar Size
  • 14.34  Stefan-Boltzmann Law
  • 14.35  Size and Luminosity
  • 14.36  Dwarfs and Giants
  • 14.37  Stellar Mass
  • 14.38  Hydrostatic Equilibrium
  • 14.39  Stellar Classification
  • 14.40  Stellar Evolution
  • 14.41  Hertzsprung-Russell Diagram
  • 14.42  HR Diagram and Stellar Size
  • 14.43  Main Sequence Stars
  • 14.44  Giant Stars
  • 14.45  Super Giant Stars
  • 14.46  White Dwarf Stars

15. Stars 2

  • 15.00  Mass and Stellar Evolution
  • 15.01  Mass Limits for Stars
  • 15.02  Properties of Main Sequence Stars
  • 15.03  Types of Main Sequence Stars
  • 15.04  The Sun as a Star
  • 15.05  Mass Luminosity Relation
  • 15.06  Main Sequence Lifetime
  • 15.07  Rate of Main Sequence Evolution
  • 15.08  Composition and Main Sequence Evolution
  • 15.09  Nearby Stars
  • 15.10  Brightest Stars
  • 15.11  Visibility of Stars
  • 15.12  Samples of Stars
  • 15.13  Star Formation
  • 15.14  Molecular Clouds
  • 15.15  Detecting Molecules in Space
  • 15.16  Types of Molecules in Space
  • 15.17  Theory of Star Formation
  • 15.18  Protostar
  • 15.19  Pre-Main Sequence Star
  • 15.20  Hayashi Tracks
  • 15.21  Brown Dwarfs
  • 15.22  T Tauri Stars
  • 15.23  Proto Stellar Disks
  • 15.24  Bipolar Outflows
  • 15.25  Magnetic Fields and Star Formation
  • 15.26  0-Age Main Sequence Stars
  • 15.27  Fusion in Stars
  • 15.28  Proton-Proton Chain
  • 15.29  Carbon Cycle
  • 15.30  Initial Mass Function
  • 15.31  Visibility of Non-Main Sequence Stars
  • 15.32  Red Giants
  • 15.33  Triple-Alpha Process
  • 15.34  Star Cores and Envelopes
  • 15.35  Variable Stars
  • 15.36  Long Period Variables
  • 15.37  Pulsation Period
  • 15.38  Short Period Variables
  • 15.39  Mass Loss Front Stars
  • 15.40  Planetary Nebulae
  • 15.41  Thermodynamics
  • 15.42  First Law of Thermodynamics
  • 15.43  Second Law of Thermodynamics
  • 15.44  Third Law of Thermodynamics
  • 15.45  Entropy
  • 15.46  Entropy and Probability
  • 15.47  Entropy and Time
  • 15.48  Entropy and Life

16. Stars 3

  • 16.00  Creation of Heavy Elements
  • 16.01  Low Mass Evolved Stars
  • 16.02  High Mass Evolved Stars
  • 16.03  Structure of Massive Star
  • 16.04  Elements Beyond Iron
  • 16.05  Cosmic Element Abundance
  • 16.06  The Heaviest Elements
  • 16.07  Death of Stars
  • 16.08  White Dwarfs
  • 16.09  Nature of White Dwarfs
  • 16.10  Chandrasekhar
  • 16.11  Degenerate Matter
  • 16.12  Chandrasekhar Limit
  • 16.13  Supernova
  • 16.14  Core Collapse
  • 16.15  Supernova Remnant
  • 16.16  Supernova Frequency
  • 16.17  Supernova 1987 A
  • 16.18  Nearby Supernova
  • 16.19  Cycle of Star Birth and Death
  • 16.20  Neutron Star
  • 16.21  Properties of Neutron Stars
  • 16.22  Pulsars
  • 16.23  Properties of Pulsars
  • 16.24  Pulsars as Clocks
  • 16.25  Black Holes
  • 16.26  Event Horizon
  • 16.27  Schwarzchild Radius
  • 16.28  Properties of Black Holes
  • 16.29  Environment of a Black Hole
  • 16.30  Detecting Black Holes
  • 16.31  Speculation About Black Holes
  • 16.32  Tests of General Relativity
  • 16.33  Gravitational Deflection of Light
  • 16.34  Gravitational Redshift
  • 16.35  Gravity Waves
  • 16.36  Gravity and Time

17. Galactic Mass Distribtuion and Galaxy Structure

  • 17.00  Space Distribution of Stars
  • 17.01  Random Distribution
  • 17.02  Clustered Distribution
  • 17.03  Stellar Companions
  • 17.04  Binary Stars
  • 17.05  Visual Binaries
  • 17.06  Spectroscopic Binary
  • 17.07  Astrometric Binary
  • 17.08  Eclipsing Binary
  • 17.09  Measuring Star Mass
  • 17.10  Incidence of Stellar Companions
  • 17.11  Contact Binary
  • 17.12  Mass Transfer in Binaries
  • 17.13  Nova
  • 17.14  Supernova

18. Galaxies

  • 18.00  Main Sequence Fitting
  • 18.01  Luminosity Class
  • 18.02  Distances from Cepheid Variables
  • 18.03  Distances and Rare Stars
  • 18.04  Distance and Obscuration
  • 18.05  Ages of Star Clusters
  • 18.06  Main Sequence Turnoff
  • 18.07  Evolving HR Diagrams
  • 18.08  Ages of Open Clusters
  • 18.09  Ages of Globular Clusters
  • 18.10  Ages from Stellar Models
  • 18.11  The Milky Way
  • 18.12  Mapping the Galaxy
  • 18.13  Herschel
  • 18.14  The Shape of the Galaxy
  • 18.15  Galactic Disk
  • 18.16  Galactic Halo
  • 18.17  Galactic Bulge
  • 18.18  Galactic Coordinates
  • 18.19  Location of the Sun
  • 18.20  Motion of the Sun
  • 18.21  Motions in the Disk
  • 18.22  Mapping the Disk
  • 18.23  Spiral Arms
  • 18.24  Density Waves
  • 18.25  Stochastic Star Formation
  • 18.26  Rotation Curve of the Galaxy
  • 18.27  Mass of the Disk
  • 18.28  Flat Rotation Curves
  • 18.29  Total Mass of the Galaxy
  • 18.30  Dark Matter
  • 18.31  Dark Matter Candidates
  • 18.32  Galactic Center
  • 18.33  Environment of the Galactic Center
  • 18.34  Black Hole in the Galactic Center
  • 18.35  Supermassive Black Hole
  • 18.36  Stellar Populations
  • 18.37  Disk Populations
  • 18.38  Bulge Populations
  • 18.39  Halo Populations
  • 18.40  Formation of the Milky Way
  • 18.41  Growth of the Milky Way
  • 18.42  Galaxies
  • 18.43  Nature of the Nebulae
  • 18.44  Shapley Curtis Debate

19. Galaxies 2

  • 19.00  Hubble
  • 19.01  Resolving the Nebula
  • 19.02  Distance to Andromeda
  • 19.03  Distance Indicators
  • 19.04  Distance Scale
  • 19.05  Random Errors in Distance
  • 19.06  Systematic Errors in Distance
  • 19.07  Importance of Distance
  • 19.08  Light Travel Time
  • 19.09  Difficulty of Interstellar Travel
  • 19.10  Galaxy Morphology
  • 19.11  Galaxy Classification
  • 19.12  Spiral Galaxies
  • 19.13  Lenticular Galaxies
  • 19.14  Elliptical Galaxies
  • 19.15  Irregular Galaxies
  • 19.16  Peculiar Galaxies
  • 19.17  Local Group
  • 19.18  Dwarf Irregular Galaxies
  • 19.19  Dwarf Elliptical Galaxies
  • 19.20  Magellanic Clouds
  • 19.21  Large Magellanic Cloud
  • 19.22  Small Magellanic Cloud
  • 19.23  Companions to the Milky Way
  • 19.24  Weighing the Milky Way
  • 19.25  Properties of Galaxies
  • 19.26  Galaxy Distance
  • 19.27  Galaxy Size
  • 19.28  Galaxy Luminosity
  • 19.29  Galaxy Color
  • 19.30  Galaxy Stellar Populations
  • 19.31  Galaxy Mass
  • 19.32  Galaxy Environment
  • 19.33  Mass to Light Ratio
  • 19.34  Galaxy Age
  • 19.35  Rotation Curves
  • 19.36  Velocity Dispersions
  • 19.37  Motion of Satellites
  • 19.38  Gravitational Microlensing
  • 19.39  Signature of Microlensing
  • 19.40  Incidence of Microlensing
  • 19.41  Microlensing and the Milky Way
  • 19.42  N-Body Gravity
  • 19.43  Numerical Simulations
  • 19.44  Galaxy Evolution

20. Galaxy Interaction and Motion

  • 20.00  Dark Matter in Galaxies
  • 20.01  Simulating Galaxies
  • 20.02  Galaxy Interactions
  • 20.03  Galaxy Collisions
  • 20.04  Galaxy Mergers
  • 20.05  Galaxy Formation
  • 20.06  Hierarchical Formation
  • 20.07  Formation of Ellipticals
  • 20.08  Formation of Spirals
  • 20.09  Discovery of Galaxy Redshifts
  • 20.10  Hubble Expansion
  • 20.11  Static Universe
  • 20.12  Expanding Universe
  • 20.13  Doppler Shift
  • 20.14  Cosmological Redshift
  • 20.15  Non-Cosmological Redshifts
  • 20.16  Center of the Expansion
  • 20.17  Origin of the Expansion
  • 20.18  Hubble Relation
  • 20.19  Hubble Constant
  • 20.20  Age of the Expansion
  • 20.21  Measuring the Hubble Constant
  • 20.22  Stars as Distance Indicators
  • 20.23  Galaxies as Distance Indicators
  • 20.24  Tully-Fischer Relation
  • 20.25  Faber-Jackson Relation
  • 20.26  Surface Brightness Fluctuations
  • 20.27  Distance from the Supernovae
  • 20.28  Redshift as a Distance Indicator
  • 20.29  Large Scale Structure
  • 20.30  Clustering
  • 20.31  Binary Galaxies
  • 20.32  Galaxy Groups
  • 20.33  Galaxy Clusters
  • 20.34  Virgo Cluster
  • 20.35  Coma Cluster
  • 20.36  Dark Matter in Clusters
  • 20.37  Morphology-Density Relation
  • 20.38  Galaxy Luminosity Function
  • 20.39  Visibility of Galaxies
  • 20.40  The Local Super Cluster
  • 20.41  Galaxy Super Clusters
  • 20.42  Galaxy Surveys
  • 20.43  Voids
  • 20.44  Types of Structures in the Universe
  • 20.45  Topology of the Universe

21. Deep Space and High-Energy Phenomena

  • 21.00  Galaxy Lensing
  • 21.01  Clustered Lensing
  • 21.02  Lensing Geometry
  • 21.03  X-Ray Clustered Gas
  • 21.04  Sunyaev-Zeldovich Effect
  • 21.05  High Redshift Clusters
  • 21.06  Deep Fields
  • 21.07  Number of Galaxies in the Universe
  • 21.08  History of Star Formation
  • 21.09  Surface Brightness
  • 21.10  High Redshift Galaxies
  • 21.11  Dark Ages
  • 21.12  Active Galaxies
  • 21.13  Frequency of Active Galaxies
  • 21.14  Detecting Supermassive Black Holes
  • 21.15  Black Holes in Nearby Galaxies
  • 21.16  Properties of Supermassive Black Holes
  • 21.17  Discovery of Active Galaxies
  • 21.18  Seyfert Galaxies
  • 21.19  Radio Galaxies
  • 21.20  Radio Galaxy Morphology
  • 21.21  Nonthermal Radiation
  • 21.22  Synchrotron Radiation
  • 21.23  Inverse Compton Radiation
  • 21.24  Emission from Accretion Disks
  • 21.25  Interaction Galaxies
  • 21.26  Discovery of Radio Sources
  • 21.27  Discovery of Quasars
  • 21.28  Nature of Quasars
  • 21.29  Redshift of Quasars
  • 21.30  Quasars and Active Galaxies
  • 21.31  Spectra of Quasars
  • 21.32  Energy Distribution of Quasars
  • 21.33  Quasar Power Source
  • 21.34  Model of Quasars
  • 21.35  Unified Model of Active Galaxies
  • 21.36  Blazars
  • 21.37  Birth and Death of Quasars
  • 21.38  Black Holes in the Universe
  • 21.39  Quasars as Probes
  • 21.40  Intergalactic Medium
  • 21.41  Cosmic Web

22. The Big Bang

  • 22.00  Cosmology
  • 22.01  Ancient Cosmology
  • 22.02  Greek Cosmology
  • 22.03  Newton's Cosmology
  • 22.04  Olber's Paradox
  • 22.05  Solution to Olber's Paradox
  • 22.06  Einstein and Cosmology
  • 22.07  Curved Space
  • 22.08  Expanding Space
  • 22.09  Expansion and Redshift
  • 22.10  The Shape of Space
  • 22.11  Analogies for the Expansion
  • 22.12  Cosmological Principle
  • 22.13  Origin of the Universe
  • 22.14  Origin of Time
  • 22.15  Big Bang
  • 22.16  Evidence of the Big Bang
  • 22.17  Scale of the Universe
  • 22.18  Dynamics of Expansion
  • 22.19  Hubble Parameter
  • 22.20  Deceleration Parameter
  • 22.21  Density Parameter
  • 22.22  Accelerating Universe
  • 22.23  Evidence for Cosmic Acceleration
  • 22.24  Cosmological Constant
  • 22.25  Dark Energy
  • 22.26  Cosmic Nucleosynthesis
  • 22.27  Light Element Abundance
  • 22.28  Helium Abundance
  • 22.29  Deuterium Abundance
  • 22.30  Cosmic Background Radiation
  • 22.31  Discovery of Microwave Background
  • 22.32  Properties of the Microwave Background
  • 22.33  Microwave Background Temperature
  • 22.34  Microwave Background Dipole
  • 22.35  Microwave Background Fluctuation

23. The Big Bang

  • 23.00  Cosmological Parameters
  • 23.01  Space Curvature
  • 23.02  Flat Space
  • 23.03  Expansion Rate
  • 23.04  Reality of the Expansion
  • 23.05  Age of the Big Bang
  • 23.06  Cosmic Evolution
  • 23.07  Density
  • 23.08  Baryon Density
  • 23.09  Dark Matter Density
  • 23.10  Cosmic Mass to Light Ratio
  • 23.11  Dim Universe
  • 23.12  Dynamical Measures of Mass Density
  • 23.13  Radiation Density
  • 23.14  Fate of the Universe
  • 23.15  Cosmic Horizons
  • 23.16  Entropy of the Universe
  • 23.17  The Arrow of Time
  • 23.18  Space - Time
  • 23.19  Space - Time Diagram
  • 23.20  Observable Universe
  • 23.21  Size of the Observable Universe
  • 23.22  Early Universe
  • 23.23  Problems with the Standard Big Bang
  • 23.24  Fine Tuning in Cosmology
  • 23.25  Cosmic Inflation
  • 23.26  Effects of Inflation
  • 23.27  Evidence of Inflation
  • 23.28  Decoupling
  • 23.29  Structure Formation
  • 23.30  Matter and Anti-Matter
  • 23.31  Creating Matter from Energy
  • 23.32  Symmetry
  • 23.33  The Origin of Matter

24. Chemistry and Context for Life

  • 24.00  Fundamental Forces
  • 24.01  Unification
  • 24.02  Broken Symmetry
  • 24.03  Planck Era
  • 24.04  Super Strings
  • 24.05  Chaotic Inflation
  • 24.06  Limits to Knowledge
  • 24.07  Life in the Universe
  • 24.08  Are We Alone?
  • 24.09  Aliens and Pseudoscience
  • 24.10  Cosmic Context for Life
  • 24.11  Cosmic Scales and Life
  • 24.12  Cosmic Evolution and Life
  • 24.13  Cosmic Chemistry and Life
  • 24.14  Stars and Life
  • 24.15  Stellar Evolution and Life
  • 24.16  Habitable Zone
  • 24.17  Chemistry of Stars
  • 24.18  Chemistry of Planets
  • 24.19  Chemistry of Life
  • 24.20  Importance of Stars
  • 24.21  Importance of Planets
  • 24.22  Importance of Carbon
  • 24.23  Importance of Water
  • 24.24  Definition of Life
  • 24.25  Idea of Evolution
  • 24.26  Natural Selection
  • 24.27  Darwin
  • 24.28  Formation of the Earth
  • 24.29  Early History of Earth
  • 24.30  History of Earth's Atmosphere
  • 24.31  History of Impacts
  • 24.32  Geological Time
  • 24.33  History of Life
  • 24.34  Origin of Life
  • 24.35  Amino Acids and Proteins

25. Early Earth and Life Processes

  • 25.00  DNA
  • 25.01  Genetic Code
  • 25.02  Life as Information
  • 25.03  Early Earth's Atmosphere
  • 25.04  Early Earth Geology
  • 25.05  Miller-Urey Experiments
  • 25.06  Organic Molecules from Space
  • 25.07  Replicating Molecules
  • 25.08  RNA
  • 25.09  Early Natural Selection
  • 25.10  Early Cells
  • 25.11  Components of Cells
  • 25.12  Specificity of Life
  • 25.13  Cell Types
  • 25.14  Prokaryotes
  • 25.15  Stromatolytes
  • 25.16  Mutation and Evolution
  • 25.17  Evolution of DNA
  • 25.18  Phylogenetic Trees
  • 25.19  Tree of Life
  • 25.20  Earliest Organisms
  • 25.21  Extremophiles
  • 25.22  Extreme Temperature Environments
  • 25.23  Extremophiles in the Ocean
  • 25.24  Extreme Pressure Environments
  • 25.25  Extreme Acidity Environments
  • 25.26  Extreme Chemical Environments
  • 25.27  Implications of Extremophiles
  • 25.28  Biological and Chemical Diversity
  • 25.29  Anaerobic Organisms
  • 25.30  Metabolic Processes
  • 25.31  Metabolism
  • 25.32  Photosynthesis
  • 25.33  Oxygen Production
  • 25.34  Oxygen and Life
  • 25.35  Diversity of Life
  • 25.36  Molecules to Genomes
  • 25.37  Early Tree of Life
  • 25.38  Eons in Earth History
  • 25.39  Eras in Earth History
  • 25.40  Periods in Earth History
  • 25.41  Heavy Bombardment
  • 25.42  Outgassing
  • 25.43  CO2 Cycle

26. Life on Earth

  • 26.00  Stability of Earth's Atmosphere
  • 26.01  Climate Instability
  • 26.02  Tectonics and Life
  • 26.03  Climate and Earth's Orbit
  • 26.04  Sexual Reproduction
  • 26.05  Multicellular Organisms
  • 26.06  Cambrian Explosion
  • 26.07  Diversification of Life
  • 26.08  Colonization of Land
  • 26.09  Random Influences of Life
  • 26.10  Contingency
  • 26.11  Mass Extinctions
  • 26.12  Impacts and Extinctions
  • 26.13  K-T Impact
  • 26.14  Other Mass Extinctions
  • 26.15  Supernovae and Life
  • 26.16  Humans and Extinction
  • 26.17  The Evolution of Intelligence
  • 26.18  Variation in Brain Size
  • 26.19  Brain Size and Complexity
  • 26.20  Evolution of Primates
  • 26.21  Evolution of Humans
  • 26.22  Technology and Life
  • 26.23  Technology and Evolution
  • 26.24  Genetic Engineering
  • 26.25  Computers and Evolution
  • 26.26  Artificial Life
  • 26.27  Life in the Solar System
  • 26.28  Life on Giant Planets
  • 26.29  Possible Sites for Life
  • 26.30  Conditions on Mars
  • 26.31  Evidence of Life on Mars
  • 26.32  Conditions on Venus
  • 26.33  Evidence of Life on Venus

27. Life in the Universe

  • 27.00  Conditions on Europa
  • 27.01  Evidence of Life on Europa
  • 27.02  Conditions on Titan
  • 27.03  Evidence of Life on Titan
  • 27.04  Habitable Zone
  • 27.05  Extreme Habitable Zone
  • 27.06  Evolution of the Habitable Zone
  • 27.07  Future of Life on Earth
  • 27.08  Ecosystems
  • 27.09  Terraforming
  • 27.10  Life in Deep Space
  • 27.11  Pan Spermia
  • 27.12  Life on Extrasolar Planets
  • 27.13  Abundance of Terrestrial Planets
  • 27.14  Detecting Terrestrial Planets
  • 27.15  Remote Sensing Earths
  • 27.16  Chemical Tracers of Life
  • 27.17  Atmosphere of Terrestrial Planets
  • 27.18  Strange Habitats for Life
  • 27.19  Future of Life in the Universe
  • 27.20  Life and Sun-Like Stars
  • 27.21  Life and Main Sequence Stars
  • 27.22  Life and Stars Beyond Main Sequence
  • 27.23  Life and Binary Stars
  • 27.24  Life and Multiple Stars
  • 27.25  Life and the Galactic Environment
  • 27.26  Life and Galaxies
  • 27.27  Intelligent Life in the Universe
  • 27.28  SETI
  • 27.29  Carl Sagan
  • 27.30  Frank Drake
  • 27.31  Jill Tarter
  • 27.32  Civilizations in Space
  • 27.33  Drake Equation
  • 27.34  Reliability of the Drake Equation

28. Interstellar Travel

  • 28.00  Rate of Star Formation
  • 28.01  Fraction of Stars with Planets
  • 28.02  Number of Habitable Planets
  • 28.03  Habitable Planets with Life
  • 28.04  Planets with Intelligent Life
  • 28.05  Intelligent Life with Technology
  • 28.06  Lifetime of a Civilization
  • 28.07  SETI Optimists
  • 28.08  SETI Pessimists
  • 28.09  Life of a Civilization
  • 28.10  Isolation of Time and Space
  • 28.11  Brain and Species Size
  • 28.12  Limitations of Space Travel
  • 28.13  Conventional Space Travel
  • 28.14  Nuclear Propulsion Systems
  • 28.15  Ion Engines and Solar Sails
  • 28.16  Realistic Rockets
  • 28.17  Relativistic Space Travel
  • 28.18  Warp Drive and Worm Holes
  • 28.19  Photons and Space Analogy
  • 28.20  Drake Equation Analogy
  • 28.21  The Fermi Paradox
  • 28.22  Von Neumann Machine
  • 28.23  Galactic Colonization
  • 28.24  Solutions to the Fermi Paradox
  • 28.25  Time Scales and Communication
  • 28.26  Evolution and Communication
  • 28.27  Theology and SETI
  • 28.28  Communicating in Space
  • 28.29  Early History of SETI
  • 28.30  Radio SETI
  • 28.31  Premises of SETI
  • 28.32  Best Wavelength for Communication
  • 28.33  Artificial Signals
  • 28.34  Modern SETI

29. Prospects of Nonhuman Intelligences

  • 29.00  Power and Radio Communication
  • 29.01  Accidental Communication
  • 29.02  Optical SETI
  • 29.03  The Difficulty of Communication
  • 29.04  Coding a Message
  • 29.05  The Arecibo Message
  • 29.06  Pioneer Plaque
  • 29.07  Voyager Record
  • 29.08  A Cosmic Language
  • 29.09  Evidence of Contact
  • 29.10  Religion and Aliens
  • 29.11  The Implication of Contact
  • 29.12  The Anthropic Principle
  • 29.13  Fine Tuning in Nature
  • 29.14  Fine Tuning and Nuclear Forces
  • 29.15  Fine Tuning and Electromagnetism
  • 29.16  Fine Tuning and Particle Masses
  • 29.17  Coincidences in Nature
  • 29.18  Design Arguments
  • 29.19  Observing the Universe
  • 29.20  Observational Selection
  • 29.21  Logic and Anthropic Principle
  • 29.22  The Cosmological Anthropic Principle
  • 29.23  The Multiverse
  • 29.24  Life and the Universe
  • 29.25  Our Special Universe
  • 29.26  Induction and Life
  • 29.27  Life on Earth
  • 29.28  Life Elsewhere

Astronomy

Please select a lecture to view.

Astronomy


Astronomy is the study of all matter and radiation beyond the earth. Astronomy is the oldest science, but it’s also the science with the most adventure and excitement going on right now. Astronomers are closing in on fundamental questions about the universe we live in including the fact of whether or not we’re alone as life forms, how old the universe is, what the universe contains, and the nature of the big bang itself. Astronomy is currently driven by innovations in technology that have led to new detectors, new regions of wavelength space being explored, and new telescopes on mountain tops around the Earth’s surface. Astronomy is one of the most exiting sciences, and astronomers have learned about the insides of dense stars, about galaxies as they first form, and the first fractions of a second of the big bang itself.