Chapter 13: Star Birth and Death

Chapter 1
How Science Works

  • The Scientific Method
  • Evidence
  • Measurements
  • Units and the Metric System
  • Measurement Errors
  • Estimation
  • Dimensions
  • Mass, Length, and Time
  • Observations and Uncertainty
  • Precision and Significant Figures
  • Errors and Statistics
  • Scientific Notation
  • Ways of Representing Data
  • Logic
  • Mathematics
  • Geometry
  • Algebra
  • Logarithms
  • Testing a Hypothesis
  • Case Study of Life on Mars
  • Theories
  • Systems of Knowledge
  • The Culture of Science
  • Computer Simulations
  • Modern Scientific Research
  • The Scope of Astronomy
  • Astronomy as a Science
  • A Scale Model of Space
  • A Scale Model of Time
  • Questions

Chapter 2
Early Astronomy

  • The Night Sky
  • Motions in the Sky
  • Navigation
  • Constellations and Seasons
  • Cause of the Seasons
  • The Magnitude System
  • Angular Size and Linear Size
  • Phases of the Moon
  • Eclipses
  • Auroras
  • Dividing Time
  • Solar and Lunar Calendars
  • History of Astronomy
  • Stonehenge
  • Ancient Observatories
  • Counting and Measurement
  • Astrology
  • Greek Astronomy
  • Aristotle and Geocentric Cosmology
  • Aristarchus and Heliocentric Cosmology
  • The Dark Ages
  • Arab Astronomy
  • Indian Astronomy
  • Chinese Astronomy
  • Mayan Astronomy
  • Questions

Chapter 3
The Copernican Revolution

  • Ptolemy and the Geocentric Model
  • The Renaissance
  • Copernicus and the Heliocentric Model
  • Tycho Brahe
  • Johannes Kepler
  • Elliptical Orbits
  • Kepler's Laws
  • Galileo Galilei
  • The Trial of Galileo
  • Isaac Newton
  • Newton's Law of Gravity
  • The Plurality of Worlds
  • The Birth of Modern Science
  • Layout of the Solar System
  • Scale of the Solar System
  • The Idea of Space Exploration
  • Orbits
  • History of Space Exploration
  • Moon Landings
  • International Space Station
  • Manned versus Robotic Missions
  • Commercial Space Flight
  • Future of Space Exploration
  • Living in Space
  • Moon, Mars, and Beyond
  • Societies in Space
  • Questions

Chapter 4
Matter and Energy in the Universe

  • Matter and Energy
  • Rutherford and Atomic Structure
  • Early Greek Physics
  • Dalton and Atoms
  • The Periodic Table
  • Structure of the Atom
  • Energy
  • Heat and Temperature
  • Potential and Kinetic Energy
  • Conservation of Energy
  • Velocity of Gas Particles
  • States of Matter
  • Thermodynamics
  • Entropy
  • Laws of Thermodynamics
  • Heat Transfer
  • Thermal Radiation
  • Wien's Law
  • Radiation from Planets and Stars
  • Internal Heat in Planets and Stars
  • Periodic Processes
  • Random Processes
  • Questions

Chapter 5
The Earth-Moon System

  • Earth and Moon
  • Early Estimates of Earth's Age
  • How the Earth Cooled
  • Ages Using Radioactivity
  • Radioactive Half-Life
  • Ages of the Earth and Moon
  • Geological Activity
  • Internal Structure of the Earth and Moon
  • Basic Rock Types
  • Layers of the Earth and Moon
  • Origin of Water on Earth
  • The Evolving Earth
  • Plate Tectonics
  • Volcanoes
  • Geological Processes
  • Impact Craters
  • The Geological Timescale
  • Mass Extinctions
  • Evolution and the Cosmic Environment
  • Earth's Atmosphere and Oceans
  • Weather Circulation
  • Environmental Change on Earth
  • The Earth-Moon System
  • Geological History of the Moon
  • Tidal Forces
  • Effects of Tidal Forces
  • Historical Studies of the Moon
  • Lunar Surface
  • Ice on the Moon
  • Origin of the Moon
  • Humans on the Moon
  • Questions

Chapter 6
The Terrestrial Planets

  • Studying Other Planets
  • The Planets
  • The Terrestrial Planets
  • Mercury
  • Mercury's Orbit
  • Mercury's Surface
  • Venus
  • Volcanism on Venus
  • Venus and the Greenhouse Effect
  • Tectonics on Venus
  • Exploring Venus
  • Mars in Myth and Legend
  • Early Studies of Mars
  • Mars Close-Up
  • Modern Views of Mars
  • Missions to Mars
  • Geology of Mars
  • Water on Mars
  • Polar Caps of Mars
  • Climate Change on Mars
  • Terraforming Mars
  • Life on Mars
  • The Moons of Mars
  • Martian Meteorites
  • Comparative Planetology
  • Incidence of Craters
  • Counting Craters
  • Counting Statistics
  • Internal Heat and Geological Activity
  • Magnetic Fields of the Terrestrial Planets
  • Mountains and Rifts
  • Radar Studies of Planetary Surfaces
  • Laser Ranging and Altimetry
  • Gravity and Atmospheres
  • Normal Atmospheric Composition
  • The Significance of Oxygen
  • Questions

Chapter 7
The Giant Planets and Their Moons

  • The Gas Giant Planets
  • Atmospheres of the Gas Giant Planets
  • Clouds and Weather on Gas Giant Planets
  • Internal Structure of the Gas Giant Planets
  • Thermal Radiation from Gas Giant Planets
  • Life on Gas Giant Planets?
  • Why Giant Planets are Giant
  • Gas Laws
  • Ring Systems of the Giant Planets
  • Structure Within Ring Systems
  • The Origin of Ring Particles
  • The Roche Limit
  • Resonance and Harmonics
  • Tidal Forces in the Solar System
  • Moons of Gas Giant Planets
  • Geology of Large Moons
  • The Voyager Missions
  • Jupiter
  • Jupiter's Galilean Moons
  • Jupiter's Ganymede
  • Jupiter's Europa
  • Jupiter's Callisto
  • Jupiter's Io
  • Volcanoes on Io
  • Saturn
  • Cassini Mission to Saturn
  • Saturn's Titan
  • Saturn's Enceladus
  • Discovery of Uranus and Neptune
  • Uranus
  • Uranus' Miranda
  • Neptune
  • Neptune's Triton
  • Pluto
  • The Discovery of Pluto
  • Pluto as a Dwarf Planet
  • Dwarf Planets
  • Questions

Chapter 8
Interplanetary Bodies

  • Interplanetary Bodies
  • Comets
  • Early Observations of Comets
  • Structure of the Comet Nucleus
  • Comet Chemistry
  • Oort Cloud and Kuiper Belt
  • Kuiper Belt
  • Comet Orbits
  • Life Story of Comets
  • The Largest Kuiper Belt Objects
  • Meteors and Meteor Showers
  • Gravitational Perturbations
  • Asteroids
  • Surveys for Earth Crossing Asteroids
  • Asteroid Shapes
  • Composition of Asteroids
  • Introduction to Meteorites
  • Origin of Meteorites
  • Types of Meteorites
  • The Tunguska Event
  • The Threat from Space
  • Probability and Impacts
  • Impact on Jupiter
  • Interplanetary Opportunity
  • Questions

Chapter 9
Planet Formation and Exoplanets

  • Formation of the Solar System
  • Early History of the Solar System
  • Conservation of Angular Momentum
  • Angular Momentum in a Collapsing Cloud
  • Helmholtz Contraction
  • Safronov and Planet Formation
  • Collapse of the Solar Nebula
  • Why the Solar System Collapsed
  • From Planetesimals to Planets
  • Accretion and Solar System Bodies
  • Differentiation
  • Planetary Magnetic Fields
  • The Origin of Satellites
  • Solar System Debris and Formation
  • Gradual Evolution and a Few Catastrophies
  • Chaos and Determinism
  • Extrasolar Planets
  • Discoveries of Exoplanets
  • Doppler Detection of Exoplanets
  • Transit Detection of Exoplanets
  • The Kepler Mission
  • Direct Detection of Exoplanets
  • Properties of Exoplanets
  • Implications of Exoplanet Surveys
  • Future Detection of Exoplanets
  • Questions

Chapter 10
Detecting Radiation from Space

  • Observing the Universe
  • Radiation and the Universe
  • The Nature of Light
  • The Electromagnetic Spectrum
  • Properties of Waves
  • Waves and Particles
  • How Radiation Travels
  • Properties of Electromagnetic Radiation
  • The Doppler Effect
  • Invisible Radiation
  • Thermal Spectra
  • The Quantum Theory
  • The Uncertainty Principle
  • Spectral Lines
  • Emission Lines and Bands
  • Absorption and Emission Spectra
  • Kirchoff's Laws
  • Astronomical Detection of Radiation
  • The Telescope
  • Optical Telescopes
  • Optical Detectors
  • Adaptive Optics
  • Image Processing
  • Digital Information
  • Radio Telescopes
  • Telescopes in Space
  • Hubble Space Telescope
  • Interferometry
  • Collecting Area and Resolution
  • Frontier Observatories
  • Questions

Chapter 11
Our Sun: The Nearest Star

  • The Sun
  • The Nearest Star
  • Properties of the Sun
  • Kelvin and the Sun's Age
  • The Sun's Composition
  • Energy From Atomic Nuclei
  • Mass-Energy Conversion
  • Examples of Mass-Energy Conversion
  • Energy From Nuclear Fission
  • Energy From Nuclear Fusion
  • Nuclear Reactions in the Sun
  • The Sun's Interior
  • Energy Flow in the Sun
  • Collisions and Opacity
  • Solar Neutrinos
  • Solar Oscillations
  • The Sun's Atmosphere
  • Solar Chromosphere and Corona
  • Sunspots
  • The Solar Cycle
  • The Solar Wind
  • Effects of the Sun on the Earth
  • Cosmic Energy Sources
  • Questions

Chapter 12
Properties of Stars

  • Stars
  • Star Names
  • Star Properties
  • The Distance to Stars
  • Apparent Brightness
  • Absolute Brightness
  • Measuring Star Distances
  • Stellar Parallax
  • Spectra of Stars
  • Spectral Classification
  • Temperature and Spectral Class
  • Stellar Composition
  • Stellar Motion
  • Stellar Luminosity
  • The Size of Stars
  • Stefan-Boltzmann Law
  • Stellar Mass
  • Hydrostatic Equilibrium
  • Stellar Classification
  • The Hertzsprung-Russell Diagram
  • Volume and Brightness Selected Samples
  • Stars of Different Sizes
  • Understanding the Main Sequence
  • Stellar Structure
  • Stellar Evolution
  • Questions

Chapter 13
Star Birth and Death

  • Star Birth and Death
  • Understanding Star Birth and Death
  • Cosmic Abundance of Elements
  • Star Formation
  • Molecular Clouds
  • Young Stars
  • T Tauri Stars
  • Mass Limits for Stars
  • Brown Dwarfs
  • Young Star Clusters
  • Cauldron of the Elements
  • Main Sequence Stars
  • Nuclear Reactions in Main Sequence Stars
  • Main Sequence Lifetimes
  • Evolved Stars
  • Cycles of Star Life and Death
  • The Creation of Heavy Elements
  • Red Giants
  • Horizontal Branch and Asymptotic Giant Branch Stars
  • Variable Stars
  • Magnetic Stars
  • Stellar Mass Loss
  • White Dwarfs
  • Supernovae
  • Seeing the Death of a Star
  • Supernova 1987A
  • Neutron Stars and Pulsars
  • Special Theory of Relativity
  • General Theory of Relativity
  • Black Holes
  • Properties of Black Holes
  • Questions

Chapter 14
The Milky Way

  • The Distribution of Stars in Space
  • Stellar Companions
  • Binary Star Systems
  • Binary and Multiple Stars
  • Mass Transfer in Binaries
  • Binaries and Stellar Mass
  • Nova and Supernova
  • Exotic Binary Systems
  • Gamma Ray Bursts
  • How Multiple Stars Form
  • Environments of Stars
  • The Interstellar Medium
  • Effects of Interstellar Material on Starlight
  • Structure of the Interstellar Medium
  • Dust Extinction and Reddening
  • Groups of Stars
  • Open Star Clusters
  • Globular Star Clusters
  • Distances to Groups of Stars
  • Ages of Groups of Stars
  • Layout of the Milky Way
  • William Herschel
  • Isotropy and Anisotropy
  • Mapping the Milky Way
  • Questions

Chapter 15
Galaxies

  • The Milky Way Galaxy
  • Mapping the Galaxy Disk
  • Spiral Structure in Galaxies
  • Mass of the Milky Way
  • Dark Matter in the Milky Way
  • Galaxy Mass
  • The Galactic Center
  • Black Hole in the Galactic Center
  • Stellar Populations
  • Formation of the Milky Way
  • Galaxies
  • The Shapley-Curtis Debate
  • Edwin Hubble
  • Distances to Galaxies
  • Classifying Galaxies
  • Spiral Galaxies
  • Elliptical Galaxies
  • Lenticular Galaxies
  • Dwarf and Irregular Galaxies
  • Overview of Galaxy Structures
  • The Local Group
  • Light Travel Time
  • Galaxy Size and Luminosity
  • Mass to Light Ratios
  • Dark Matter in Galaxies
  • Gravity of Many Bodies
  • Galaxy Evolution
  • Galaxy Interactions
  • Galaxy Formation
  • Questions

Chapter 16
The Expanding Universe

  • Galaxy Redshifts
  • The Expanding Universe
  • Cosmological Redshifts
  • The Hubble Relation
  • Relating Redshift and Distance
  • Galaxy Distance Indicators
  • Size and Age of the Universe
  • The Hubble Constant
  • Large Scale Structure
  • Galaxy Clustering
  • Clusters of Galaxies
  • Overview of Large Scale Structure
  • Dark Matter on the Largest Scales
  • The Most Distant Galaxies
  • Black Holes in Nearby Galaxies
  • Active Galaxies
  • Radio Galaxies
  • The Discovery of Quasars
  • Quasars
  • Types of Gravitational Lensing
  • Properties of Quasars
  • The Quasar Power Source
  • Quasars as Probes of the Universe
  • Star Formation History of the Universe
  • Expansion History of the Universe
  • Questions

Chapter 17
Cosmology

  • Cosmology
  • Early Cosmologies
  • Relativity and Cosmology
  • The Big Bang Model
  • The Cosmological Principle
  • Universal Expansion
  • Cosmic Nucleosynthesis
  • Cosmic Microwave Background Radiation
  • Discovery of the Microwave Background Radiation
  • Measuring Space Curvature
  • Cosmic Evolution
  • Evolution of Structure
  • Mean Cosmic Density
  • Critical Density
  • Dark Matter and Dark Energy
  • Age of the Universe
  • Precision Cosmology
  • The Future of the Contents of the Universe
  • Fate of the Universe
  • Alternatives to the Big Bang Model
  • Space-Time
  • Particles and Radiation
  • The Very Early Universe
  • Mass and Energy in the Early Universe
  • Matter and Antimatter
  • The Forces of Nature
  • Fine-Tuning in Cosmology
  • The Anthropic Principle in Cosmology
  • String Theory and Cosmology
  • The Multiverse
  • The Limits of Knowledge
  • Questions

Chapter 18
Life On Earth

  • Nature of Life
  • Chemistry of Life
  • Molecules of Life
  • The Origin of Life on Earth
  • Origin of Complex Molecules
  • Miller-Urey Experiment
  • Pre-RNA World
  • RNA World
  • From Molecules to Cells
  • Metabolism
  • Anaerobes
  • Extremophiles
  • Thermophiles
  • Psychrophiles
  • Xerophiles
  • Halophiles
  • Barophiles
  • Acidophiles
  • Alkaliphiles
  • Radiation Resistant Biology
  • Importance of Water for Life
  • Hydrothermal Systems
  • Silicon Versus Carbon
  • DNA and Heredity
  • Life as Digital Information
  • Synthetic Biology
  • Life in a Computer
  • Natural Selection
  • Tree Of Life
  • Evolution and Intelligence
  • Culture and Technology
  • The Gaia Hypothesis
  • Life and the Cosmic Environment

Chapter 19
Life in the Universe

  • Life in the Universe
  • Astrobiology
  • Life Beyond Earth
  • Sites for Life
  • Complex Molecules in Space
  • Life in the Solar System
  • Lowell and Canals on Mars
  • Implications of Life on Mars
  • Extreme Environments in the Solar System
  • Rare Earth Hypothesis
  • Are We Alone?
  • Unidentified Flying Objects or UFOs
  • The Search for Extraterrestrial Intelligence
  • The Drake Equation
  • The History of SETI
  • Recent SETI Projects
  • Recognizing a Message
  • The Best Way to Communicate
  • The Fermi Question
  • The Anthropic Principle
  • Where Are They?

The Creation of Heavy Elements



The Periodic Table of Elements

The major subplot in the life stories of stars is the creation of elements. Main sequence stars like the Sun create helium from hydrogen. More massive stars can also make carbon by the triple-alpha process. However, there are many elements in the periodic table heavier than carbon. Are these created in stars or were they present at the birth of the universe? How can we explain the existence and the vastly varying cosmic abundance of different chemical elements? It is the result of the abilities of stars of different masses, and at different stages in their evolution, to create elements up the periodic table.

 

William Fowler

Sir Fred Hoyle

The question of the origin of the elements was taken up in the 1950s by four young astrophysicists working at the California Institute of Technology. Three of them were from England — the husband-and-wife team of Geoffrey and Margaret Burbidge, and the iconoclastic Fred Hoyle. The fourth was William Fowler, a genial expert in nuclear physics (with Scottish roots). In a massive paper in 1957, they succeeded in explaining most aspects of the cosmic abundance of elements. They wrote: "the problem of element synthesis is closely allied to the problem of stellar evolution." All the members of the team had stellar careers. The Burbidges each became directors of a major observatory, Hoyle was knighted, and Fowler received the Nobel Prize. Their paper told the story of how stars had created the materials of the everyday world — the calcium in our bones, the nitrogen and oxygen in the air we breathe, the metals in the cars we drive, and the silicon in our computers.

Extreme temperatures are required to fuse heavy elements. Recall that the core of a giant star is contracting. As the core contracts and gets hotter, it can initiate reactions involving even heavier elements. The elements synthesized depend on the mass of the star. Imagine a set of massive red giants with different masses: 4, 6, 8, 10 solar masses, and so on. Those of about 4 or 6 solar masses will have helium-rich cores hot enough to ignite the helium nuclei and fuse them into carbon in the triple-alpha (helium nuclei are also called alpha particles) process just described. Those of around 8 solar masses will have hot enough cores to further ignite the carbon and fuse it into heavier elements such as oxygen, neon, and magnesium.

The reactions in massive stars where helium nuclei are fused to heavier nuclei include:

12C + 4He → 16O + photon

16O + 4He → 20Ne + photon

These reactions require temperatures above 500 million K. Heavy nuclei can also fuse with each other, although in this case, the electrical repulsion between protons in the nuclei is stronger, and a temperature above 1 billion K is needed for the reactions to proceed:

Carbon Fusion:

12C + 12C → 24Mg + photon

Oxygen Fusion:


Cutaway diagram of massive star pre-collapse. Based on a tracing of Public Domain NASA diagram Nucleosynthesis in a star.gif color key version)

16O + 16O → 32S + photon

 

The final stage of heavy element creation in main sequence stars, which happens only in stars whose cores reach temperatures of a few billion K, is called Silicon Fusion. Although the overall result of this is to turn silicon and sulfur into iron, it proceeds in a very different way from previous burning stages. The silicon made by oxygen burning is "melted" down by the extreme temperatures in the core to He, neutrons, and protons. These particles then rearrange themselves by hundreds of different reactions into elements like 56Fe, an iron nucleus.

If a star is massive enough, the core-building process leads to a core consisting of shells with increasingly heavier elements, surrounding an inner core of iron. We are used to thinking of iron as a solid metal, but the state of iron at the center of a massive evolved star is quite different. Stellar iron is actually denser than terrestrial iron, but the electrons have been stripped from all the atoms and the nuclei are not held together in a lattice. Fantastic pressure keeps the iron as a high-temperature gas. The shell structure in these stars can be so complex that there can be different fusion reactions happening on the surfaces of different shells all at the same time.


Estimated abundances of the chemical elements in the Solar system. Hydrogen and helium are most common, from the Big Bang. The next three elements (Li, Be, B) are rare because they are poorly synthesized in the Big Bang and also in stars. The two general trends in the remaining stellar-produced elements are: (1) an alternation of abundance in elements as they have even or odd atomic numbers, and (2) a general decrease in abundance, as elements become heavier.

With iron, the fusion process reaches an insurmountable obstacle. Iron has the most stable nuclear configuration of any element. This means that energy is consumed, not produced, as iron nuclei fuse into heavier elements. This accounts for the steep fall in abundance of the elements heavier than iron. Thus the iron nuclei in stars do not continue to ignite and fuse as the core contracts and gets hotter. The heart of a star is like an iron tomb that traps matter and releases no energy to counter the continuing collapse.

 

But what about the elements heavier than iron? If even the most massive stars can only fuse elements up to iron, where do the rest of the elements (like the gold and platinum in jewelry and the uranium that is involved in terrestrial nuclear power) come from? In addition to the nuclear fusion that stars use as their main source of power, there are side processes that go on, in shell burning in giant stars and in the supernova explosion process, that make these elements heavier than iron. Although they are rare, their existence requires us to explain their production. This gives astronomers yet another test of their stellar models.

Observations, combined with computer models, have illuminated two ways that elements heavier than iron are created. In the r-process, neutrons are rapidly captured by iron nuclei and nuclei of similar atomic numbers. Since neutrons have no electric charge, they can easily insert themselves into an atomic nucleus given sufficient temperature and pressure. The r-process occurs with blinding speed in the blast wave that results from the death of a massive star, an event called a supernova. The s-process is a slower neutron capture process that occurs in evolved stars. Whereas the r-process takes seconds, the s-process takes thousands of years. Slow neutron capture happens after a star from 0.6 to 10 times the mass of the Sun leaves the main sequence, in a stage of evolution called the asymptotic giant branch. Until a few years ago it was thought that half of the heavy elements beyond iron are produced by each process.

However, our understanding of heavy element production was scrambled by the observation of neutron star collisions by the Laser Interferometer Gravitational-Wave Observatory (LIGO). Observations and computer simulations suggested that the cataclysm of neutron stars colliding could be a prodigious source of heavy elements, all the way up to gold and platinum. Meanwhile, clues had been accumulating that supernovae were not as efficient factories for heavy elements as had been thought. LIGO had been detecting black hole collisions, but in August 2017 it saw an event that was different. It had the hallmarks of a neutron star collision and it was followed by a burst of gamma rays with an afterglow that was caught by ground-based telescopes. Astronomers saw a radioactive waste cloud that started off the size of a small city but, moving at a few tenths of light speed, it grew in a day to the size of the Solar System. They estimated that the neutron star collision created 200 Earth masses of pure gold and 500 Earth masses of pure platinum! The field is still in flux, but it now appears that neutron star collisions generate most of the heavy elements in the universe.

Stars are like factories whose main business is the creation of heavy elements from lighter ones. Remember that main sequence stars release less than a percent of the mass of a hydrogen atom as pure energy when they make helium. The same is true of the nuclear reactions at later stages of a star's life. So the heat and light we see from a star are just minor by-products of the fusion process, just as the heat and light we see from a factory do not reflect its primary purpose of making large objects from smaller components. Stars are the "factories" of the matter we see around us. In order to return these newly created elements to interstellar space, stars need to eject them via mass loss - winds, planetary nebulae, and supernovae. The dense cores of these objects lock up material that will never be incorporated into the gas that makes a new generation of stars. White dwarfs hold on to their helium, carbon, and oxygen, and neutron stars keep the material in iron cores from ever returning to interstellar space. Black holes are even more enigmatic; their heavy elements are trapped within an event horizon which stops any information about that material from reaching us.


Author: Chris Impey
Editor/Contributor: Erik Brogt
Editor/Contributor: Audra Baleisis