Chapter 17: Cosmology

Chapter 1
How Science Works

  • The Scientific Method
  • Evidence
  • Measurements
  • Units and the Metric System
  • Measurement Errors
  • Estimation
  • Dimensions
  • Mass, Length, and Time
  • Observations and Uncertainty
  • Precision and Significant Figures
  • Errors and Statistics
  • Scientific Notation
  • Ways of Representing Data
  • Logic
  • Mathematics
  • Geometry
  • Algebra
  • Logarithms
  • Testing a Hypothesis
  • Case Study of Life on Mars
  • Theories
  • Systems of Knowledge
  • The Culture of Science
  • Computer Simulations
  • Modern Scientific Research
  • The Scope of Astronomy
  • Astronomy as a Science
  • A Scale Model of Space
  • A Scale Model of Time
  • Questions

Chapter 2
Early Astronomy

  • The Night Sky
  • Motions in the Sky
  • Navigation
  • Constellations and Seasons
  • Cause of the Seasons
  • The Magnitude System
  • Angular Size and Linear Size
  • Phases of the Moon
  • Eclipses
  • Auroras
  • Dividing Time
  • Solar and Lunar Calendars
  • History of Astronomy
  • Stonehenge
  • Ancient Observatories
  • Counting and Measurement
  • Astrology
  • Greek Astronomy
  • Aristotle and Geocentric Cosmology
  • Aristarchus and Heliocentric Cosmology
  • The Dark Ages
  • Arab Astronomy
  • Indian Astronomy
  • Chinese Astronomy
  • Mayan Astronomy
  • Questions

Chapter 3
The Copernican Revolution

  • Ptolemy and the Geocentric Model
  • The Renaissance
  • Copernicus and the Heliocentric Model
  • Tycho Brahe
  • Johannes Kepler
  • Elliptical Orbits
  • Kepler's Laws
  • Galileo Galilei
  • The Trial of Galileo
  • Isaac Newton
  • Newton's Law of Gravity
  • The Plurality of Worlds
  • The Birth of Modern Science
  • Layout of the Solar System
  • Scale of the Solar System
  • The Idea of Space Exploration
  • Orbits
  • History of Space Exploration
  • Moon Landings
  • International Space Station
  • Manned versus Robotic Missions
  • Commercial Space Flight
  • Future of Space Exploration
  • Living in Space
  • Moon, Mars, and Beyond
  • Societies in Space
  • Questions

Chapter 4
Matter and Energy in the Universe

  • Matter and Energy
  • Rutherford and Atomic Structure
  • Early Greek Physics
  • Dalton and Atoms
  • The Periodic Table
  • Structure of the Atom
  • Energy
  • Heat and Temperature
  • Potential and Kinetic Energy
  • Conservation of Energy
  • Velocity of Gas Particles
  • States of Matter
  • Thermodynamics
  • Entropy
  • Laws of Thermodynamics
  • Heat Transfer
  • Thermal Radiation
  • Wien's Law
  • Radiation from Planets and Stars
  • Internal Heat in Planets and Stars
  • Periodic Processes
  • Random Processes
  • Questions

Chapter 5
The Earth-Moon System

  • Earth and Moon
  • Early Estimates of Earth's Age
  • How the Earth Cooled
  • Ages Using Radioactivity
  • Radioactive Half-Life
  • Ages of the Earth and Moon
  • Geological Activity
  • Internal Structure of the Earth and Moon
  • Basic Rock Types
  • Layers of the Earth and Moon
  • Origin of Water on Earth
  • The Evolving Earth
  • Plate Tectonics
  • Volcanoes
  • Geological Processes
  • Impact Craters
  • The Geological Timescale
  • Mass Extinctions
  • Evolution and the Cosmic Environment
  • Earth's Atmosphere and Oceans
  • Weather Circulation
  • Environmental Change on Earth
  • The Earth-Moon System
  • Geological History of the Moon
  • Tidal Forces
  • Effects of Tidal Forces
  • Historical Studies of the Moon
  • Lunar Surface
  • Ice on the Moon
  • Origin of the Moon
  • Humans on the Moon
  • Questions

Chapter 6
The Terrestrial Planets

  • Studying Other Planets
  • The Planets
  • The Terrestrial Planets
  • Mercury
  • Mercury's Orbit
  • Mercury's Surface
  • Venus
  • Volcanism on Venus
  • Venus and the Greenhouse Effect
  • Tectonics on Venus
  • Exploring Venus
  • Mars in Myth and Legend
  • Early Studies of Mars
  • Mars Close-Up
  • Modern Views of Mars
  • Missions to Mars
  • Geology of Mars
  • Water on Mars
  • Polar Caps of Mars
  • Climate Change on Mars
  • Terraforming Mars
  • Life on Mars
  • The Moons of Mars
  • Martian Meteorites
  • Comparative Planetology
  • Incidence of Craters
  • Counting Craters
  • Counting Statistics
  • Internal Heat and Geological Activity
  • Magnetic Fields of the Terrestrial Planets
  • Mountains and Rifts
  • Radar Studies of Planetary Surfaces
  • Laser Ranging and Altimetry
  • Gravity and Atmospheres
  • Normal Atmospheric Composition
  • The Significance of Oxygen
  • Questions

Chapter 7
The Giant Planets and Their Moons

  • The Gas Giant Planets
  • Atmospheres of the Gas Giant Planets
  • Clouds and Weather on Gas Giant Planets
  • Internal Structure of the Gas Giant Planets
  • Thermal Radiation from Gas Giant Planets
  • Life on Gas Giant Planets?
  • Why Giant Planets are Giant
  • Gas Laws
  • Ring Systems of the Giant Planets
  • Structure Within Ring Systems
  • The Origin of Ring Particles
  • The Roche Limit
  • Resonance and Harmonics
  • Tidal Forces in the Solar System
  • Moons of Gas Giant Planets
  • Geology of Large Moons
  • The Voyager Missions
  • Jupiter
  • Jupiter's Galilean Moons
  • Jupiter's Ganymede
  • Jupiter's Europa
  • Jupiter's Callisto
  • Jupiter's Io
  • Volcanoes on Io
  • Saturn
  • Cassini Mission to Saturn
  • Saturn's Titan
  • Saturn's Enceladus
  • Discovery of Uranus and Neptune
  • Uranus
  • Uranus' Miranda
  • Neptune
  • Neptune's Triton
  • Pluto
  • The Discovery of Pluto
  • Pluto as a Dwarf Planet
  • Dwarf Planets
  • Questions

Chapter 8
Interplanetary Bodies

  • Interplanetary Bodies
  • Comets
  • Early Observations of Comets
  • Structure of the Comet Nucleus
  • Comet Chemistry
  • Oort Cloud and Kuiper Belt
  • Kuiper Belt
  • Comet Orbits
  • Life Story of Comets
  • The Largest Kuiper Belt Objects
  • Meteors and Meteor Showers
  • Gravitational Perturbations
  • Asteroids
  • Surveys for Earth Crossing Asteroids
  • Asteroid Shapes
  • Composition of Asteroids
  • Introduction to Meteorites
  • Origin of Meteorites
  • Types of Meteorites
  • The Tunguska Event
  • The Threat from Space
  • Probability and Impacts
  • Impact on Jupiter
  • Interplanetary Opportunity
  • Questions

Chapter 9
Planet Formation and Exoplanets

  • Formation of the Solar System
  • Early History of the Solar System
  • Conservation of Angular Momentum
  • Angular Momentum in a Collapsing Cloud
  • Helmholtz Contraction
  • Safronov and Planet Formation
  • Collapse of the Solar Nebula
  • Why the Solar System Collapsed
  • From Planetesimals to Planets
  • Accretion and Solar System Bodies
  • Differentiation
  • Planetary Magnetic Fields
  • The Origin of Satellites
  • Solar System Debris and Formation
  • Gradual Evolution and a Few Catastrophies
  • Chaos and Determinism
  • Extrasolar Planets
  • Discoveries of Exoplanets
  • Doppler Detection of Exoplanets
  • Transit Detection of Exoplanets
  • The Kepler Mission
  • Direct Detection of Exoplanets
  • Properties of Exoplanets
  • Implications of Exoplanet Surveys
  • Future Detection of Exoplanets
  • Questions

Chapter 10
Detecting Radiation from Space

  • Observing the Universe
  • Radiation and the Universe
  • The Nature of Light
  • The Electromagnetic Spectrum
  • Properties of Waves
  • Waves and Particles
  • How Radiation Travels
  • Properties of Electromagnetic Radiation
  • The Doppler Effect
  • Invisible Radiation
  • Thermal Spectra
  • The Quantum Theory
  • The Uncertainty Principle
  • Spectral Lines
  • Emission Lines and Bands
  • Absorption and Emission Spectra
  • Kirchoff's Laws
  • Astronomical Detection of Radiation
  • The Telescope
  • Optical Telescopes
  • Optical Detectors
  • Adaptive Optics
  • Image Processing
  • Digital Information
  • Radio Telescopes
  • Telescopes in Space
  • Hubble Space Telescope
  • Interferometry
  • Collecting Area and Resolution
  • Frontier Observatories
  • Questions

Chapter 11
Our Sun: The Nearest Star

  • The Sun
  • The Nearest Star
  • Properties of the Sun
  • Kelvin and the Sun's Age
  • The Sun's Composition
  • Energy From Atomic Nuclei
  • Mass-Energy Conversion
  • Examples of Mass-Energy Conversion
  • Energy From Nuclear Fission
  • Energy From Nuclear Fusion
  • Nuclear Reactions in the Sun
  • The Sun's Interior
  • Energy Flow in the Sun
  • Collisions and Opacity
  • Solar Neutrinos
  • Solar Oscillations
  • The Sun's Atmosphere
  • Solar Chromosphere and Corona
  • Sunspots
  • The Solar Cycle
  • The Solar Wind
  • Effects of the Sun on the Earth
  • Cosmic Energy Sources
  • Questions

Chapter 12
Properties of Stars

  • Stars
  • Star Names
  • Star Properties
  • The Distance to Stars
  • Apparent Brightness
  • Absolute Brightness
  • Measuring Star Distances
  • Stellar Parallax
  • Spectra of Stars
  • Spectral Classification
  • Temperature and Spectral Class
  • Stellar Composition
  • Stellar Motion
  • Stellar Luminosity
  • The Size of Stars
  • Stefan-Boltzmann Law
  • Stellar Mass
  • Hydrostatic Equilibrium
  • Stellar Classification
  • The Hertzsprung-Russell Diagram
  • Volume and Brightness Selected Samples
  • Stars of Different Sizes
  • Understanding the Main Sequence
  • Stellar Structure
  • Stellar Evolution
  • Questions

Chapter 13
Star Birth and Death

  • Star Birth and Death
  • Understanding Star Birth and Death
  • Cosmic Abundance of Elements
  • Star Formation
  • Molecular Clouds
  • Young Stars
  • T Tauri Stars
  • Mass Limits for Stars
  • Brown Dwarfs
  • Young Star Clusters
  • Cauldron of the Elements
  • Main Sequence Stars
  • Nuclear Reactions in Main Sequence Stars
  • Main Sequence Lifetimes
  • Evolved Stars
  • Cycles of Star Life and Death
  • The Creation of Heavy Elements
  • Red Giants
  • Horizontal Branch and Asymptotic Giant Branch Stars
  • Variable Stars
  • Magnetic Stars
  • Stellar Mass Loss
  • White Dwarfs
  • Supernovae
  • Seeing the Death of a Star
  • Supernova 1987A
  • Neutron Stars and Pulsars
  • Special Theory of Relativity
  • General Theory of Relativity
  • Black Holes
  • Properties of Black Holes
  • Questions

Chapter 14
The Milky Way

  • The Distribution of Stars in Space
  • Stellar Companions
  • Binary Star Systems
  • Binary and Multiple Stars
  • Mass Transfer in Binaries
  • Binaries and Stellar Mass
  • Nova and Supernova
  • Exotic Binary Systems
  • Gamma Ray Bursts
  • How Multiple Stars Form
  • Environments of Stars
  • The Interstellar Medium
  • Effects of Interstellar Material on Starlight
  • Structure of the Interstellar Medium
  • Dust Extinction and Reddening
  • Groups of Stars
  • Open Star Clusters
  • Globular Star Clusters
  • Distances to Groups of Stars
  • Ages of Groups of Stars
  • Layout of the Milky Way
  • William Herschel
  • Isotropy and Anisotropy
  • Mapping the Milky Way
  • Questions

Chapter 15
Galaxies

  • The Milky Way Galaxy
  • Mapping the Galaxy Disk
  • Spiral Structure in Galaxies
  • Mass of the Milky Way
  • Dark Matter in the Milky Way
  • Galaxy Mass
  • The Galactic Center
  • Black Hole in the Galactic Center
  • Stellar Populations
  • Formation of the Milky Way
  • Galaxies
  • The Shapley-Curtis Debate
  • Edwin Hubble
  • Distances to Galaxies
  • Classifying Galaxies
  • Spiral Galaxies
  • Elliptical Galaxies
  • Lenticular Galaxies
  • Dwarf and Irregular Galaxies
  • Overview of Galaxy Structures
  • The Local Group
  • Light Travel Time
  • Galaxy Size and Luminosity
  • Mass to Light Ratios
  • Dark Matter in Galaxies
  • Gravity of Many Bodies
  • Galaxy Evolution
  • Galaxy Interactions
  • Galaxy Formation
  • Questions

Chapter 16
The Expanding Universe

  • Galaxy Redshifts
  • The Expanding Universe
  • Cosmological Redshifts
  • The Hubble Relation
  • Relating Redshift and Distance
  • Galaxy Distance Indicators
  • Size and Age of the Universe
  • The Hubble Constant
  • Large Scale Structure
  • Galaxy Clustering
  • Clusters of Galaxies
  • Overview of Large Scale Structure
  • Dark Matter on the Largest Scales
  • The Most Distant Galaxies
  • Black Holes in Nearby Galaxies
  • Active Galaxies
  • Radio Galaxies
  • The Discovery of Quasars
  • Quasars
  • Types of Gravitational Lensing
  • Properties of Quasars
  • The Quasar Power Source
  • Quasars as Probes of the Universe
  • Star Formation History of the Universe
  • Expansion History of the Universe
  • Questions

Chapter 17
Cosmology

  • Cosmology
  • Early Cosmologies
  • Relativity and Cosmology
  • The Big Bang Model
  • The Cosmological Principle
  • Universal Expansion
  • Cosmic Nucleosynthesis
  • Cosmic Microwave Background Radiation
  • Discovery of the Microwave Background Radiation
  • Measuring Space Curvature
  • Cosmic Evolution
  • Evolution of Structure
  • Mean Cosmic Density
  • Critical Density
  • Dark Matter and Dark Energy
  • Age of the Universe
  • Precision Cosmology
  • The Future of the Contents of the Universe
  • Fate of the Universe
  • Alternatives to the Big Bang Model
  • Space-Time
  • Particles and Radiation
  • The Very Early Universe
  • Mass and Energy in the Early Universe
  • Matter and Antimatter
  • The Forces of Nature
  • Fine-Tuning in Cosmology
  • The Anthropic Principle in Cosmology
  • String Theory and Cosmology
  • The Multiverse
  • The Limits of Knowledge
  • Questions

Chapter 18
Life On Earth

  • Nature of Life
  • Chemistry of Life
  • Molecules of Life
  • The Origin of Life on Earth
  • Origin of Complex Molecules
  • Miller-Urey Experiment
  • Pre-RNA World
  • RNA World
  • From Molecules to Cells
  • Metabolism
  • Anaerobes
  • Extremophiles
  • Thermophiles
  • Psychrophiles
  • Xerophiles
  • Halophiles
  • Barophiles
  • Acidophiles
  • Alkaliphiles
  • Radiation Resistant Biology
  • Importance of Water for Life
  • Hydrothermal Systems
  • Silicon Versus Carbon
  • DNA and Heredity
  • Life as Digital Information
  • Synthetic Biology
  • Life in a Computer
  • Natural Selection
  • Tree Of Life
  • Evolution and Intelligence
  • Culture and Technology
  • The Gaia Hypothesis
  • Life and the Cosmic Environment

Chapter 19
Life in the Universe

  • Life in the Universe
  • Astrobiology
  • Life Beyond Earth
  • Sites for Life
  • Complex Molecules in Space
  • Life in the Solar System
  • Lowell and Canals on Mars
  • Implications of Life on Mars
  • Extreme Environments in the Solar System
  • Rare Earth Hypothesis
  • Are We Alone?
  • Unidentified Flying Objects or UFOs
  • The Search for Extraterrestrial Intelligence
  • The Drake Equation
  • The History of SETI
  • Recent SETI Projects
  • Recognizing a Message
  • The Best Way to Communicate
  • The Fermi Question
  • The Anthropic Principle
  • Where Are They?

Relativity and Cosmology



Albert Einstein

Modern cosmology began with Albert Einstein. First, his special theory of relativity showed that time and space are supple and not adequately described by the rigid, linear measures proposed by Newton. Experiment shows us that the speed of light is a constant number, regardless of the motion of the observer. There are three bizarre consequences of the fact that we cannot measure our motion with respect to a beam of light: (1) Time slows down for a fast-moving object. (2) A fast-moving object shrinks in the direction of motion. (3) The mass of a fast-moving object increases, with the energy of motion converting into mass by the famous relationship E = mc2. These effects are not visible in the everyday world where objects move slowly compared to the speed of light.

Special relativity deals with objects in constant relative motion. By contrast, general relativity deals with objects in non-uniform motion. Einstein was led to the general theory of relativity by pondering what seemed to be a coincidence in physics. The gravitational mass of an object — its response to a gravitational force — is identical to its inertial mass — the resistance it presents to a change in its motion. At first glance, these appear to be very different forms of mass. Imagine a large, smooth piece of iron at rest on a slick, icy surface. Gravitational mass dictates the force with which the iron presses down on the ice. Inertial mass is the resistance of the iron to a change in speed, either trying to speed it up or slow it down. The inertial mass has nothing to do with gravity since the motion on the ice is horizontal and gravity acts vertically. Nevertheless, inertial and gravitational masses are measured to be equal to an exquisite degree of precision: modern experiments find the difference to be less than 1 part in 1015. Einstein believed that this coincidence held the key to understanding gravity.

An analogy will show how difficult it is to distinguish between motion caused by gravity and motion caused by any other force. Suppose that you are trapped in a windowless elevator. Einstein showed that there is no way to distinguish between the motion of objects in an elevator at rest on the Earth's surface and in an elevator accelerating through distant space at a rate of 9.8 m/s2. In each case, you would have your normal weight. He also realized that there is no way to distinguish between the motion of objects in an elevator floating freely in space and in an elevator in free fall toward the Earth's surface at a rate of 9.8 m/s2. In each case, you would be weightless. In short, there is no measurable difference between acceleration caused by gravity and acceleration from any other force.

Gravity is just a convenient way to describe how the presence of mass causes an object to change its motion. Einstein "generalized" his special theory by showing how gravity could distort space and time. General relativity replaces Newton's force of gravity with the geometry of space itself. The familiar Newtonian idea of masses placed in smooth and uniform space is replaced with the counterintuitive idea of space that is distorted by the masses it contains. Matter curves space and light and particles follow the undulating paths dictated by the curvature.

In 1917, Einstein applied the equations of general relativity to the universe as a whole. He assumed that the universe was static because astronomers at the time believed the universe to contain only the enormous Milky Way, with stars milling around in it. (Ironically, the astronomer Vesto Slipher was already gathering spectra that would reveal the recession of the galaxies and disprove the static model.) No matter how Einstein solved the equations, they stubbornly indicated a dynamic universe, one that was either expanding or contracting. To force a static solution to the equations, he added an arbitrary term. Einstein later admitted that this adjustment was "the greatest blunder of my life." Because of it, he missed the chance to predict the expansion of the universe ten years before Hubble observed it.


Georges Lemaitre

Alexander Friedmann

In the 1920s, Russian mathematician Alexander Friedmann and Belgian mathematician Georges Lemaître independently solved the equations of general relativity and showed mathematically that the universe was expanding. Then, with Hubble's discovery of the redshift-distance relation, what had originally seemed to be a purely theoretical model was supported by observations. Galaxies are not moving apart through space in a large-scale version of the Doppler effect. Galaxies are being carried apart by the expansion of space itself. Galaxy recession velocities are indicators of a cosmological redshift. We can fall back on a simple analogy: the surface of a balloon with small beads glued on it to represent galaxies. (Keep in mind that this is a two-dimensional representation of a positively curved space that exists in three dimensions.) As the balloon is being blown up, its expansion reveals several relevant features of the expanding universe.

 

Determining the Hubble constant using supernova type 1a.

The raisin bread model of the universe explains how each galaxy can perceive every other galaxy in the universe as receding from it.

The balloon analogy for an expanding universe is accurate in the sense that the beads are carried apart by the stretching rubber of the balloon. In general relativity, the fabric of space is expanding, carrying the galaxies with it. The beads follow a Hubble law, with recession velocity proportional to distance. No bead is at the center of the balloon, and no bead is at the edge. Although the space is expanding, the beads remain the same size. In our universe, although galaxies and clusters are moving farther apart, their internal gravity keeps them from expanding in size. These regions of non-expanding space are well described by Newton's laws: the Solar System is not expanding, nor is your house. Note also that as the balloon expands, the curvature of the space decreases: think of the difference in curvature between a balloon the size of your fist and one the size of a house. We can even add to the balloon an analogy for the cosmological redshift. Imagine a wave of light (or any electromagnetic wave) drawn on the balloon while it is small. As the balloon expands, the wavelength is stretched or reddened. In the real universe, light travels through expanding space, and we see a redshift that increases with the distance that light has traveled.

The expanding universe has space curvature. The best way to measure the curvature is through the deflection of light. If light and all other forms of electromagnetic energy have an equivalent mass, given by E = mc2, then light should respond to space curvature just as particles do. A light beam sent across an elevator that is accelerating through space is deflected by a tiny amount because during the time it takes to cross the elevator, the elevator has moved. However, Einstein showed that this situation is indistinguishable from an elevator at rest on the Earth's surface. The same amount of deflection is predicted due to the gravity of the Earth! Mass curves space and both radiation and particles follow the trajectories dictated by the curvature.

Astronomers know that space can be locally curved. The observation that starlight is deflected around the edge of the Sun by 1.8 seconds of arc (only 0.1% of the Sun's angular diameter!) was a dramatic confirmation of the general theory of relativity. Gravitational lensing occurs because a galaxy or a cluster warps space and causes the distortion of light from a background quasar or galaxy. In the extreme example of a black hole, space is so highly curved that it is "pinched off," and matter and radiation are trapped within an event horizon.

General relativity allows for the possibility that space is globally curved by all the matter and energy in the universe. To understand this, it is useful to explore the difference between Euclidean and non-Euclidean geometry. Newton's gravity relied on the familiar three-dimensional geometry of Euclid. In Euclidean geometry, space is flat and two-dimensional surfaces have no curvature. The sum of the angles in a triangle is 180°, and parallel lines or beams of light will never meet. Euclidean space is flat.


Examples of curved spaces in everyday life

In the late 1800s, mathematicians in Germany, Italy, and Russia became fascinated with types of geometry quite different from Euclidean geometry and that of everyday experience. None of those mathematicians dreamed that their esoteric work would be applied to the field of cosmology. Two classes of non-Euclidean space exist: spherical and hyperbolic. Positively curved geometry in our analogy is like the surface of a sphere. The sum of the angles in a triangle is greater than 180°, and parallel lines or beams of light converge, so this spherical space is also called a "closed" space. Slightly less familiar is negatively curved geometry, which in our analogy is shaped like a saddle or a hyperbola in two dimensions. The sum of the angles in a triangle is less than 180°, and parallel lines or beams of light diverge, so this hyperbolic space is also called "open" space.

Here is a summary of the three types of space curvature: Euclidean (or flat), spherical, and hyperbolic:

• Euclidean: zero curvature, infinite volume, the sum of angles = 180°, parallel lines stay parallel

• Spherical: positive curvature, finite volume, the sum of angles > 180°, parallel lines converge

• Hyperbolic: negative curvature, infinite volume, the sum of angles < 180°, parallel lines diverge

It helps to use a two-dimensional analogy for curved space because experience and intuition help in understanding the two-dimensional situation, whereas the three-dimensional situation is difficult to grasp without mathematics. The surface of flat or open space is infinite. Just imagine a sheet that continues forever. (In three dimensions this corresponds to an infinite volume.) By contrast, the surface of a closed space is finite and so is its volume. The Earth's two-dimensional surface, for example, is just such a finite closed space. However, the Earth is also unbounded: it has a definite area but you can travel in one direction forever without coming to an edge. By analogy, we can imagine the universe as a finite, closed space in which the galaxies stretch into space in every direction, but where there is nevertheless no edge. This analogy answers the age-old question of Archytas and the other Greek thinkers: the universe can be finite and unbounded.

How can we prove that this analogy truly represents the universe? Everyday experience gives us no clue as to whether or not space is curved. Similarly, out in the desert or on the ocean, the planet we live on appears to be flat. No local surveying technique would show any departure from Euclidean geometry. However, observations over a large distance can indeed measure the curvature. If you were traveling along the Earth's equator from East to West, you could make a right turn (90° angle) and you would be traveling directly toward the North Pole. At the North Pole, if you made another right turn from your direction of arrival, you would be traveling back down toward the equator. At the equator, if you made a third right turn, you would be traveling along the equator again and would arrive back where you started. The sum of the angles in your triangular journey is 270° — proof that Earth does not have a flat surface! Also, if you travel straight in any direction on the Earth's surface and travel far enough, you will eventually return to your starting point. We cannot duplicate these experiments in the three-dimensional universe, but astronomers have invented clever ways to try and measure space curvature.


Author: Chris Impey
Editor/Contributor: Erik Brogt