Chapter 17: Cosmology

Chapter 1
How Science Works

  • The Scientific Method
  • Evidence
  • Measurements
  • Units and the Metric System
  • Measurement Errors
  • Estimation
  • Dimensions
  • Mass, Length, and Time
  • Observations and Uncertainty
  • Precision and Significant Figures
  • Errors and Statistics
  • Scientific Notation
  • Ways of Representing Data
  • Logic
  • Mathematics
  • Geometry
  • Algebra
  • Logarithms
  • Testing a Hypothesis
  • Case Study of Life on Mars
  • Theories
  • Systems of Knowledge
  • The Culture of Science
  • Computer Simulations
  • Modern Scientific Research
  • The Scope of Astronomy
  • Astronomy as a Science
  • A Scale Model of Space
  • A Scale Model of Time
  • Questions

Chapter 2
Early Astronomy

  • The Night Sky
  • Motions in the Sky
  • Navigation
  • Constellations and Seasons
  • Cause of the Seasons
  • The Magnitude System
  • Angular Size and Linear Size
  • Phases of the Moon
  • Eclipses
  • Auroras
  • Dividing Time
  • Solar and Lunar Calendars
  • History of Astronomy
  • Stonehenge
  • Ancient Observatories
  • Counting and Measurement
  • Astrology
  • Greek Astronomy
  • Aristotle and Geocentric Cosmology
  • Aristarchus and Heliocentric Cosmology
  • The Dark Ages
  • Arab Astronomy
  • Indian Astronomy
  • Chinese Astronomy
  • Mayan Astronomy
  • Questions

Chapter 3
The Copernican Revolution

  • Ptolemy and the Geocentric Model
  • The Renaissance
  • Copernicus and the Heliocentric Model
  • Tycho Brahe
  • Johannes Kepler
  • Elliptical Orbits
  • Kepler's Laws
  • Galileo Galilei
  • The Trial of Galileo
  • Isaac Newton
  • Newton's Law of Gravity
  • The Plurality of Worlds
  • The Birth of Modern Science
  • Layout of the Solar System
  • Scale of the Solar System
  • The Idea of Space Exploration
  • Orbits
  • History of Space Exploration
  • Moon Landings
  • International Space Station
  • Manned versus Robotic Missions
  • Commercial Space Flight
  • Future of Space Exploration
  • Living in Space
  • Moon, Mars, and Beyond
  • Societies in Space
  • Questions

Chapter 4
Matter and Energy in the Universe

  • Matter and Energy
  • Rutherford and Atomic Structure
  • Early Greek Physics
  • Dalton and Atoms
  • The Periodic Table
  • Structure of the Atom
  • Energy
  • Heat and Temperature
  • Potential and Kinetic Energy
  • Conservation of Energy
  • Velocity of Gas Particles
  • States of Matter
  • Thermodynamics
  • Entropy
  • Laws of Thermodynamics
  • Heat Transfer
  • Thermal Radiation
  • Wien's Law
  • Radiation from Planets and Stars
  • Internal Heat in Planets and Stars
  • Periodic Processes
  • Random Processes
  • Questions

Chapter 5
The Earth-Moon System

  • Earth and Moon
  • Early Estimates of Earth's Age
  • How the Earth Cooled
  • Ages Using Radioactivity
  • Radioactive Half-Life
  • Ages of the Earth and Moon
  • Geological Activity
  • Internal Structure of the Earth and Moon
  • Basic Rock Types
  • Layers of the Earth and Moon
  • Origin of Water on Earth
  • The Evolving Earth
  • Plate Tectonics
  • Volcanoes
  • Geological Processes
  • Impact Craters
  • The Geological Timescale
  • Mass Extinctions
  • Evolution and the Cosmic Environment
  • Earth's Atmosphere and Oceans
  • Weather Circulation
  • Environmental Change on Earth
  • The Earth-Moon System
  • Geological History of the Moon
  • Tidal Forces
  • Effects of Tidal Forces
  • Historical Studies of the Moon
  • Lunar Surface
  • Ice on the Moon
  • Origin of the Moon
  • Humans on the Moon
  • Questions

Chapter 6
The Terrestrial Planets

  • Studying Other Planets
  • The Planets
  • The Terrestrial Planets
  • Mercury
  • Mercury's Orbit
  • Mercury's Surface
  • Venus
  • Volcanism on Venus
  • Venus and the Greenhouse Effect
  • Tectonics on Venus
  • Exploring Venus
  • Mars in Myth and Legend
  • Early Studies of Mars
  • Mars Close-Up
  • Modern Views of Mars
  • Missions to Mars
  • Geology of Mars
  • Water on Mars
  • Polar Caps of Mars
  • Climate Change on Mars
  • Terraforming Mars
  • Life on Mars
  • The Moons of Mars
  • Martian Meteorites
  • Comparative Planetology
  • Incidence of Craters
  • Counting Craters
  • Counting Statistics
  • Internal Heat and Geological Activity
  • Magnetic Fields of the Terrestrial Planets
  • Mountains and Rifts
  • Radar Studies of Planetary Surfaces
  • Laser Ranging and Altimetry
  • Gravity and Atmospheres
  • Normal Atmospheric Composition
  • The Significance of Oxygen
  • Questions

Chapter 7
The Giant Planets and Their Moons

  • The Gas Giant Planets
  • Atmospheres of the Gas Giant Planets
  • Clouds and Weather on Gas Giant Planets
  • Internal Structure of the Gas Giant Planets
  • Thermal Radiation from Gas Giant Planets
  • Life on Gas Giant Planets?
  • Why Giant Planets are Giant
  • Gas Laws
  • Ring Systems of the Giant Planets
  • Structure Within Ring Systems
  • The Origin of Ring Particles
  • The Roche Limit
  • Resonance and Harmonics
  • Tidal Forces in the Solar System
  • Moons of Gas Giant Planets
  • Geology of Large Moons
  • The Voyager Missions
  • Jupiter
  • Jupiter's Galilean Moons
  • Jupiter's Ganymede
  • Jupiter's Europa
  • Jupiter's Callisto
  • Jupiter's Io
  • Volcanoes on Io
  • Saturn
  • Cassini Mission to Saturn
  • Saturn's Titan
  • Saturn's Enceladus
  • Discovery of Uranus and Neptune
  • Uranus
  • Uranus' Miranda
  • Neptune
  • Neptune's Triton
  • Pluto
  • The Discovery of Pluto
  • Pluto as a Dwarf Planet
  • Dwarf Planets
  • Questions

Chapter 8
Interplanetary Bodies

  • Interplanetary Bodies
  • Comets
  • Early Observations of Comets
  • Structure of the Comet Nucleus
  • Comet Chemistry
  • Oort Cloud and Kuiper Belt
  • Kuiper Belt
  • Comet Orbits
  • Life Story of Comets
  • The Largest Kuiper Belt Objects
  • Meteors and Meteor Showers
  • Gravitational Perturbations
  • Asteroids
  • Surveys for Earth Crossing Asteroids
  • Asteroid Shapes
  • Composition of Asteroids
  • Introduction to Meteorites
  • Origin of Meteorites
  • Types of Meteorites
  • The Tunguska Event
  • The Threat from Space
  • Probability and Impacts
  • Impact on Jupiter
  • Interplanetary Opportunity
  • Questions

Chapter 9
Planet Formation and Exoplanets

  • Formation of the Solar System
  • Early History of the Solar System
  • Conservation of Angular Momentum
  • Angular Momentum in a Collapsing Cloud
  • Helmholtz Contraction
  • Safronov and Planet Formation
  • Collapse of the Solar Nebula
  • Why the Solar System Collapsed
  • From Planetesimals to Planets
  • Accretion and Solar System Bodies
  • Differentiation
  • Planetary Magnetic Fields
  • The Origin of Satellites
  • Solar System Debris and Formation
  • Gradual Evolution and a Few Catastrophies
  • Chaos and Determinism
  • Extrasolar Planets
  • Discoveries of Exoplanets
  • Doppler Detection of Exoplanets
  • Transit Detection of Exoplanets
  • The Kepler Mission
  • Direct Detection of Exoplanets
  • Properties of Exoplanets
  • Implications of Exoplanet Surveys
  • Future Detection of Exoplanets
  • Questions

Chapter 10
Detecting Radiation from Space

  • Observing the Universe
  • Radiation and the Universe
  • The Nature of Light
  • The Electromagnetic Spectrum
  • Properties of Waves
  • Waves and Particles
  • How Radiation Travels
  • Properties of Electromagnetic Radiation
  • The Doppler Effect
  • Invisible Radiation
  • Thermal Spectra
  • The Quantum Theory
  • The Uncertainty Principle
  • Spectral Lines
  • Emission Lines and Bands
  • Absorption and Emission Spectra
  • Kirchoff's Laws
  • Astronomical Detection of Radiation
  • The Telescope
  • Optical Telescopes
  • Optical Detectors
  • Adaptive Optics
  • Image Processing
  • Digital Information
  • Radio Telescopes
  • Telescopes in Space
  • Hubble Space Telescope
  • Interferometry
  • Collecting Area and Resolution
  • Frontier Observatories
  • Questions

Chapter 11
Our Sun: The Nearest Star

  • The Sun
  • The Nearest Star
  • Properties of the Sun
  • Kelvin and the Sun's Age
  • The Sun's Composition
  • Energy From Atomic Nuclei
  • Mass-Energy Conversion
  • Examples of Mass-Energy Conversion
  • Energy From Nuclear Fission
  • Energy From Nuclear Fusion
  • Nuclear Reactions in the Sun
  • The Sun's Interior
  • Energy Flow in the Sun
  • Collisions and Opacity
  • Solar Neutrinos
  • Solar Oscillations
  • The Sun's Atmosphere
  • Solar Chromosphere and Corona
  • Sunspots
  • The Solar Cycle
  • The Solar Wind
  • Effects of the Sun on the Earth
  • Cosmic Energy Sources
  • Questions

Chapter 12
Properties of Stars

  • Stars
  • Star Names
  • Star Properties
  • The Distance to Stars
  • Apparent Brightness
  • Absolute Brightness
  • Measuring Star Distances
  • Stellar Parallax
  • Spectra of Stars
  • Spectral Classification
  • Temperature and Spectral Class
  • Stellar Composition
  • Stellar Motion
  • Stellar Luminosity
  • The Size of Stars
  • Stefan-Boltzmann Law
  • Stellar Mass
  • Hydrostatic Equilibrium
  • Stellar Classification
  • The Hertzsprung-Russell Diagram
  • Volume and Brightness Selected Samples
  • Stars of Different Sizes
  • Understanding the Main Sequence
  • Stellar Structure
  • Stellar Evolution
  • Questions

Chapter 13
Star Birth and Death

  • Star Birth and Death
  • Understanding Star Birth and Death
  • Cosmic Abundance of Elements
  • Star Formation
  • Molecular Clouds
  • Young Stars
  • T Tauri Stars
  • Mass Limits for Stars
  • Brown Dwarfs
  • Young Star Clusters
  • Cauldron of the Elements
  • Main Sequence Stars
  • Nuclear Reactions in Main Sequence Stars
  • Main Sequence Lifetimes
  • Evolved Stars
  • Cycles of Star Life and Death
  • The Creation of Heavy Elements
  • Red Giants
  • Horizontal Branch and Asymptotic Giant Branch Stars
  • Variable Stars
  • Magnetic Stars
  • Stellar Mass Loss
  • White Dwarfs
  • Supernovae
  • Seeing the Death of a Star
  • Supernova 1987A
  • Neutron Stars and Pulsars
  • Special Theory of Relativity
  • General Theory of Relativity
  • Black Holes
  • Properties of Black Holes
  • Questions

Chapter 14
The Milky Way

  • The Distribution of Stars in Space
  • Stellar Companions
  • Binary Star Systems
  • Binary and Multiple Stars
  • Mass Transfer in Binaries
  • Binaries and Stellar Mass
  • Nova and Supernova
  • Exotic Binary Systems
  • Gamma Ray Bursts
  • How Multiple Stars Form
  • Environments of Stars
  • The Interstellar Medium
  • Effects of Interstellar Material on Starlight
  • Structure of the Interstellar Medium
  • Dust Extinction and Reddening
  • Groups of Stars
  • Open Star Clusters
  • Globular Star Clusters
  • Distances to Groups of Stars
  • Ages of Groups of Stars
  • Layout of the Milky Way
  • William Herschel
  • Isotropy and Anisotropy
  • Mapping the Milky Way
  • Questions

Chapter 15
Galaxies

  • The Milky Way Galaxy
  • Mapping the Galaxy Disk
  • Spiral Structure in Galaxies
  • Mass of the Milky Way
  • Dark Matter in the Milky Way
  • Galaxy Mass
  • The Galactic Center
  • Black Hole in the Galactic Center
  • Stellar Populations
  • Formation of the Milky Way
  • Galaxies
  • The Shapley-Curtis Debate
  • Edwin Hubble
  • Distances to Galaxies
  • Classifying Galaxies
  • Spiral Galaxies
  • Elliptical Galaxies
  • Lenticular Galaxies
  • Dwarf and Irregular Galaxies
  • Overview of Galaxy Structures
  • The Local Group
  • Light Travel Time
  • Galaxy Size and Luminosity
  • Mass to Light Ratios
  • Dark Matter in Galaxies
  • Gravity of Many Bodies
  • Galaxy Evolution
  • Galaxy Interactions
  • Galaxy Formation
  • Questions

Chapter 16
The Expanding Universe

  • Galaxy Redshifts
  • The Expanding Universe
  • Cosmological Redshifts
  • The Hubble Relation
  • Relating Redshift and Distance
  • Galaxy Distance Indicators
  • Size and Age of the Universe
  • The Hubble Constant
  • Large Scale Structure
  • Galaxy Clustering
  • Clusters of Galaxies
  • Overview of Large Scale Structure
  • Dark Matter on the Largest Scales
  • The Most Distant Galaxies
  • Black Holes in Nearby Galaxies
  • Active Galaxies
  • Radio Galaxies
  • The Discovery of Quasars
  • Quasars
  • Types of Gravitational Lensing
  • Properties of Quasars
  • The Quasar Power Source
  • Quasars as Probes of the Universe
  • Star Formation History of the Universe
  • Expansion History of the Universe
  • Questions

Chapter 17
Cosmology

  • Cosmology
  • Early Cosmologies
  • Relativity and Cosmology
  • The Big Bang Model
  • The Cosmological Principle
  • Universal Expansion
  • Cosmic Nucleosynthesis
  • Cosmic Microwave Background Radiation
  • Discovery of the Microwave Background Radiation
  • Measuring Space Curvature
  • Cosmic Evolution
  • Evolution of Structure
  • Mean Cosmic Density
  • Critical Density
  • Dark Matter and Dark Energy
  • Age of the Universe
  • Precision Cosmology
  • The Future of the Contents of the Universe
  • Fate of the Universe
  • Alternatives to the Big Bang Model
  • Space-Time
  • Particles and Radiation
  • The Very Early Universe
  • Mass and Energy in the Early Universe
  • Matter and Antimatter
  • The Forces of Nature
  • Fine-Tuning in Cosmology
  • The Anthropic Principle in Cosmology
  • String Theory and Cosmology
  • The Multiverse
  • The Limits of Knowledge
  • Questions

Chapter 18
Life On Earth

  • Nature of Life
  • Chemistry of Life
  • Molecules of Life
  • The Origin of Life on Earth
  • Origin of Complex Molecules
  • Miller-Urey Experiment
  • Pre-RNA World
  • RNA World
  • From Molecules to Cells
  • Metabolism
  • Anaerobes
  • Extremophiles
  • Thermophiles
  • Psychrophiles
  • Xerophiles
  • Halophiles
  • Barophiles
  • Acidophiles
  • Alkaliphiles
  • Radiation Resistant Biology
  • Importance of Water for Life
  • Hydrothermal Systems
  • Silicon Versus Carbon
  • DNA and Heredity
  • Life as Digital Information
  • Synthetic Biology
  • Life in a Computer
  • Natural Selection
  • Tree Of Life
  • Evolution and Intelligence
  • Culture and Technology
  • The Gaia Hypothesis
  • Life and the Cosmic Environment

Chapter 19
Life in the Universe

  • Life in the Universe
  • Astrobiology
  • Life Beyond Earth
  • Sites for Life
  • Complex Molecules in Space
  • Life in the Solar System
  • Lowell and Canals on Mars
  • Implications of Life on Mars
  • Extreme Environments in the Solar System
  • Rare Earth Hypothesis
  • Are We Alone?
  • Unidentified Flying Objects or UFOs
  • The Search for Extraterrestrial Intelligence
  • The Drake Equation
  • The History of SETI
  • Recent SETI Projects
  • Recognizing a Message
  • The Best Way to Communicate
  • The Fermi Question
  • The Anthropic Principle
  • Where Are They?

Discovery of the Microwave Background Radiation



George Gamow

In the 1940s, Russian physicist George Gamow was exploring the implications of the expansion of the universe. He realized that if the expansion were traced backward, it would point to a time when the universe was hot and dense; perhaps even hotter and denser than a star. Gamow knew that the hot early universe must have been filled with high-energy radiation. Somehow, this environment of deadly radiation and high-speed particles must have evolved into the large and empty universe we see today. The big bang concept had been introduced in 1927 by another physicist, the Belgian priest George Lemaître, who called the early universe the primeval atoms and talked about "a day without a yesterday."

 

Temperature map of the universe, as measured by WMAP. Image of the cosmic microwave background.

Measured blackbody curve for the cosmic background radiation

Fluctuations in cosmic microwave background radiation as seen by COBE

In thinking about the evolution of the universe, Gamow realized that the early hot universe would expand and cool, much like any gas, but it would never become completely cold. His rough estimate put the current temperature in the range of 5-10 Kelvin, incredibly cold. Like any blackbody, the universe was a whole emitted light with a characteristic color distribution that reflected the gas's temperature. For the first roughly 400,000 years of our universe's history, this thermal light didn't get to escape to be observed — individual photons couldn't travel a meaningful distance in the too-dense early universe and were constantly absorbed by atomic nuclei and electrons that were all in constant collision. (You can think of the early universe as opaque.) Once the universe cooled enough that electrons and nuclei could bond, the photons could fly free.

Today, we see these photons, which originated as short-wavelength, high-energy photons, as the Cosmic Microwave Background. While they started out on the blue end of the electromagnetic spectrum when they formed in the early universe, cosmic expansion has caused them to be stretched out as the universe expanded. In effect, they have been redshifted to a much longer wavelength and lower energy. Gamow predicted that the universe should be bathed in this radiation that is a relic of the big bang but is now redshifted to microwave wavelengths and a temperature only a few degrees above absolute zero. Unfortunately, Gamow's prediction could not be verified at the time it was made; radio astronomy was in its infancy, and no telescopes sensitive to microwave radiation existed. Gamow's prediction thus fell into obscurity for a decade.


Robert Wilson, left, and Arno Penzias stand in front of the Bell Labs horn radio antenna in Crawford Hill, N.J., where they discovered cosmic background radiation confirming the Big Bang.

Arno Penzias

In 1964, Arno Penzias and Robert Wilson, two engineers at Bell Telephone Laboratories, were testing a sensitive, horn-shaped microwave antenna designed to relay telephone calls to communication satellites orbiting the Earth. As part of their tests, they were mapping the faint microwave radiation emitted by the Milky Way. An unknown source of noise affected their measurements even after they had carefully checked their equipment. The excess noise did not appear to change intensity with direction in the sky, time of day, or season, and it was not associated with any known astronomical source. At one point, they noticed that pigeons were roosting inside the antenna. Concerned that a residue left by the birds might be affecting their measurements (Penzias and Wilson euphemistically called it a "thin, white, dielectric film"), they cleaned the horn and started over. The noise persisted.

Through a colleague, Penzias and Wilson learned that a group of physicists at nearby Princeton University led by Robert Dicke was building a receiver to look for Gamow's proposed cosmic background radiation. Penzias and Wilson had been unaware of Gamow's work, but through luck and technical skill, they found the microwave signal first. The extra noise they detected had exactly the temperature predicted by Gamow. The two Bell Lab engineers were awarded the Nobel Prize in 1978, ten years after Gamow's death. Their discovery was dramatic confirmation that the universe had once been hot and dense — they had seen the echo of the big bang.

Gamow was a brilliant scientist with an iconoclast's touch. Like Einstein, he never lost his sense of youthful curiosity and wonder at the workings of the universe. He wrote a series of books, illustrated by his own cartoons, which made abstract physics real by showing what the world would be like if you were shrunk to the size of a sub-atomic particle. While he didn't live long enough to get the Nobel Prize, he did get to see confirmation of his theories, which is a prize in itself.


Author: Chris Impey
Editor/Contributor: Pamela Gay
Editor/Contributor: Erik Brogt